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Abstract

A highly-configurable analog system is presented. A prototype chip is fabricated

and an ADC and filter functionalities are demonstrated. The chip consists of eight

identical programmable stages.
In an ADC configuration, the first five stages are programmed to implement a 10-

bit ADC. The ADC has ENOB of 8 bits at 50 MSPS. The ENOB improves to 8.5 bits if

the sampling rate is lowered to 30MSPS. The ADC has an FOM of 150fJ/conversion-

step, which is very competitive with the state of the art ADCs. The first stage is

responsible for 75% of the input-referred noise power. The sampling noise is respon-

sible for 40% of the total noise power and the zero-crossing detector is responsible for

60%.
The chip is tested in two different filter configurations. In one test, the first two

stages of the chip are configured as a second order Butterworth filter and the third

stage is configured as an amplifier. In another test, the first three stages of the chip are

programmed as a third-order Butterworth filter. The desired filter functionalities are

demonstrated in both configurations. It is shown that in a third order Butterworth

filter, more than 90% of the noise is due to the zero-crossing detector of the last stage.

This is mainly due to the fact that the noise of earlier stages is filtered with the filter
transfer function, but the noise of the last stage is not filtered.

The ZCBC architecture has been used to avoid the stability problems and scale

power consumption with sampling frequency. A new technique is introduced to im-

plement the terminating resistors in a ladder filter. This technique does not have

any area or power overhead. An asymmetric differential signaling is also introduced.

This method improves the dynamic range of the output signals, which is particularly

important in new technology nodes with low supply voltage.
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Chapter 1

Introduction

While digital FPGAs provide a fast and cost-efficient method to prototype digital

circuits, the development of similar system for analog circuits is still limited because

it is difficult to realize a programmable analog system that can be configured to wide

variety of analog circuits. A highly programmable analog system that can be config-

ured for an arbitrary analog functionality is very valuable. Many electronic devices

use multiple communication standards. As the number of communication standards

are growing rapidly, electronic devices tend to incorporate more communication stan-

dards, which increases the cost of the system. To integrate multiple standards on the

same chip, a highly-programmable analog system can replace the analog blocks of all

these systems. In addition, highly-programmable analog systems can be used as the

analog core of software defined radios (SDR) to perform its required analog function-

alities such as analog to digital conversion (ADC), filtering, and programmable gain

amplification. Clearly, SDR requires programmable radio frequency circuits as well

(such as programmable mixer, low-noise amplifier, oscillator). Highly programmable

analog systems can also be used in fast prototyping of analog systems. They can

also be used for educational purposes (similar to digital FPGAs that are used in

educational implementation of digital systems).

Field programmable analog arrays (FPAA) have been previously proposed [1] . It

uses continuous-time blocks whose gain is programmable by changing transconduc-

tance of amplifiers. Programmable connectivity between analog circuits is a major



challenge in reconfigurable analog systems. It uses permanent connection between

adjacent blocks and sets the gain of adjacent blocks to zero to effectively discon-

nect them. Another implementation uses programmable transconductance and pro-

grammable capacitor to control the gain of stages [2]. A programmable ADC that

can be configured as sigma-delta or pipeline employs programmable capacitors, pro-

grammable connectivity, and adjustable biasing [3]. This project demonstrates a

highly-reconfigurable analog system that can be used to implement pipeline ADCs

and switched-capacitor filters. Zero-crossing based circuits (ZCBC) are utilized for

superior power efficiency and reconfigurability.

In the rest of this chapter, ADCs and switched-capacitor filters are reviewed. In

Chapter 2, zero-crossing based circuits are described. Chapter 3 describes how the

system is implemented. Chapter 4 analyzes the noise of the system and Chapter 5

reviews the sensitivity of the reconfigurable system to capacitor mismatch and to the

offset of the zero-crossing detectors. Chapter 6 describes the measurement results of

the fabricated chip and Chapter 7 concludes the thesis.

1.1 ADC Review

An analog to digital convertor (ADC) converts an analog signal to its correspond-

ing digital code. Main ADC architectures include flash ADCs [4][5][6], successive-

approximation-register ADCs [7][8], pipeline ADCs [9][10], sigma-delta ADCs [11],

and time-interleaved ADCs [12][13]. As shown in Figure 1-1, each architecture is

more suitable for a particular range of sampling rate and resolution [14]. Flash and

time-interleaved ADCs are suitable for higher speeds than pipeline ADCs (which is

not shown on Figure 1-1). There is an overlapping area where more than one archi-

tecture may be suitable. Pipeline ADCs are chosen for this research to cover medium

to high speed and resolution range.
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Figure 1-1: ADC Architecture for different sampling rates and resolution [14].

1.1.1 Pipeline ADC

Pipeline ADCs consist of several identical stages that are cascaded. The block dia-

gram of each stage is shown in Figure 1-2. Each stage is composed of four components,

a sub-ADC, a digital-to-analog convertor (DAC), an adder, and an amplifier. A sub-

ADC is usually an ADC with limited number of quantization levels, n. For example,

it may be a flash ADC with only one or two bits, while the overall pipeline ADC may

have 10-14 bits.

When an analog signal is converted to a digital code, there is a difference be-

tween the amplitude of the analog signal and the amplitude of the digital code. The

difference is due to the limited number of the bits in the digital code and is called

quantization error. As the number of the digital bits increases, the quantization error

reduces.

In pipeline ADCs, the sub-ADC has a limited resolution. To increase the overall

resolution of a pipeline ADC, the quantization error of the sub-ADC is sent to the
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Figure 1-2: Block diagram of one stage of a pipeline ADC

subsequent stages. Subsequent stages convert the quantization error of earlier stages

to the corresponding digital codes and add it to the overall digital output. As a result,

each cascaded stage increases the resolution of the ADC. To find the quantization

error of each stage, V, the output of the sub-ADC is sent to a DAC and subtracted

from the input signal as shown in Figure 1-2. Since the amplitude of V is small, it is

typically amplified. If n is the number of the bits of the sub-ADC, the range of V is

smaller than the full-scale input range by a factor of -L. If it is desired that Vin and

Vst have the same range, the amplifier should have a gain of 2n. This is usually the

case for pipeline ADCs utilizing identical stages. Figure 1-3 shows the relationship

between the input and output of each stage and the corresponding digital code if the

sub-ADC has 2-bit resolution.

To construct the digital output code of a pipeline ADC, the output of each stage

should be multiplied by the gain of earlier stages and added to the final digital code.

If a pipeline ADC has k stages, and each stage has n quantization bits (Di for stage

i), the digital output code of the ADC is given by:

ADCcode D1 + D2 * 2n + D3 * 22n + ... + Dk * 2 (k-1) (1. 1)

1.1.2 Over-Range Protection in Pipeline ADC

The sub-ADC may have an offset in its threshold voltages for different digital codes

as shown in Figure 1-4. As a result, V0st may exceed the full scale input range (Vrej
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Figure 1-3: The relationship between the input and output signals for each stage of
a pipeline ADC when the sub-ADC has 2-bit resolution (n=2).

or -Vef) of subsequent stages for some values of Vm,. In that case, the subsequent

stages cannot resolve the input voltage in the region that saturates the subsequent

stage. To avoid this problem, the threshold voltages of the sub-ADC are chosen so

that the output does not exceed Vef or -Vef as shown in Figure 1-5. If needed, the

number of threshold levels can be increased. This method provides some margin of

error for the threshold of the sub-ADC digital codes.

1.2 Filter Review

There are two main architectures to implement switched-capacitor filters, biquad

filters [15] and ladder architecture [16]. Since this chip is intended to implement

any arbitrary filter, the exact functionality of each stage is not known a priori. For

example, the order of the filter and its cutoff frequency are programmable. Since

biquad-based filters are sensitive to capacitor matching [16], ladder filter architecture

is used in this research.
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Figure 1-4: The effects of the offset of the sub-ADC threshold levels on the output
voltage.

1.2.1 Passive Ladder Filter

Figure 1-6 shows a passive ladder filter. The number of storage components (capaci-

tors, and inductors) determines the order of the filter and the type of the components

determines the type of the filter. For example, Figure 1-6 shows a low-pass filter. If

the capacitors are replaced with inductors, and the inductors are replaced with ca-

pacitors, a high-pass filter is obtained (Figure 1-7). Similarly, replacing capacitors in

Figure 1-6 with a parallel combination of a capacitor and an inductor, and replacing

the inductor with a series combination of a capacitor and an inductor results in a

band-pass filter (Figure 1-8). The value of the capacitors, inductors, and the resistors

determine the cut-off frequency of the filter and the shape of the filter (e.g. Butter-

worth, Chebyshev, and Elliptic). The design of ladder filters is researched extensively

[17][18]. The value of each component in the ladder filters can be easily determined

with software as well [19].
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Figure 1-6: Passive implementation of a fifth-order low-pass ladder filter.

1.2.2 Active Ladder Filter

An opamp-based implementation of the low-pass ladder filter is shown in Figure 1-9

as proposed by [16]. This architecture is used to implement filters in this chip. In this

section, first it is shown that the passive filter in Figure 1-6 and the active filter in

Figure 1-9 are equivalent. Then, it is described how to determine the value of different

components in the active filter, if the value of all components in the equivalent passive

filter is known.

In Figure 1-6, the state variables are, V11, i12 , V13 , i14 , and Vt. Each state

variable can be written in terms of other state variables and the input. For example,

Vout

Vref -

-Vret -
'I

I.
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Figure 1-7: Passive implementation of a high-pass ladder filter.
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1-8: Passive implementation of a band-pass ladder filter.

V11 can be written as a function of other state variables as in Equation 1.2. For

simplicity, it is assumed that R1 = 1 and R5 = 1.

dVnj _ AVn 1
dt At C1 ( n- Vn i12 ) (1.2)

In Figure 1-9, the state variables are, %21, V2 2 , V23, V2 4, and V1 ot. In the active

filter, V21 is equivalent to V1 in the passive filter. V2 1 can be written as a function

of other state variables as in Equation 1.3. For simplicity, it is assumed that all the

sampling capacitors have a unit value.

1
V%1 z= C(1K - V 1 -V 2 2)0A2 21 n 2 (1.3)

Table 1.1 shows the equivalent state variables in the two filters. In order to make

Equation 1.2 and Equation 1.3 equivalent state equations in the two circuits, the

relationship between C21 and C11 should be:

Figure

R2

L3



C 2 1 - Cn - fiAt

where At in the passive filter is equivalent to the period of each clock cycle in the

active implementation. Table 1.2 shows the equivalent state equations for the two

circuits. Since the state equations are equivalent, the two circuits are equivalent as

well. Table 1.3 shows the value of each component in the active filter based on the

value of its corresponding compoent in the passive filter.

V 2 V24

Figure 1-9: Passive implementation of a band-pass ladder filter.

Table 1.1: Equivalent state variables in the passive filter and the active filter.

Passive filter Active filter

Vn1  V21

i12 V2 2

V13  V23

i14 V 2 4

vout out

1.2.3 Thesis Contribution

In this research, a new architecture for a reconfigurable analog system is proposed.

This architecture is suitable to implement an ADC and low-pass ladder filters. Zero-

crossing based circuits are used for the first time to implement a reconfigurable sys-

tem. It is also the first time that filter functionality is achieved with zero-crossed

(1.4)



filter and the active filter.

based circuits. One unique characteristic of the proposed system is that the power

consumption scales linearly with the sampling rate.

Asymmetric signaling is introduced for the first time to increase the dynamic range

of ZCBCs. In addition, a new technique is introduced to implement the terminating

resistors of a ladder filter. This technique improves the programmability of the system

and reduces the complexity and area overhead of each stage.

The noise of the system is analyzed in both ADC and filter configurations. The

dominant sources of noise are identified and their noise contributions are quantified.

In addition, the sensitivity of the system to capacitor mismatch and the offset of

zero-crossing detector is analyzed.

Finally, a chip is fabricated to show the ADC and filter functionality. Many

measurements are performed to characterize the chip. The cost of reconfigurability

is also estimated for the fabricated chip.



Table 1.3: The value of the components in the active filter based on the value of their

corresponding components in the equivalent passive filter.

Value of components in the active filter
C 21  Cnl.f clk
C22 = L 12.f clk

C23 = C13.f clk
C24 = L 14 .f clk
C25 = C 15.f clk
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Chapter 2

Zero-Crossing-Based Circuits

(ZCBC)

Figure 2-1 shows an opamp-based circuit that amplifies its input. The analog input

signal is sampled across C1 and C2 in phase 1. The opamp-based circuit transfers the

charge on capacitor C2 to capacitor C1 in phase 2. As a result, the output voltage is

equal to the amplified input signal. In a negative feedback configuration, the value

of differential input voltage of an opamp is close to zero. If the positive input of the

opamp is connected to the ground instead of V,,, the voltage at node V, is nearly

the same as the ground without direct connection to the ground. Therefore, it is

referred to as a virtual ground. The terminology is used even when the positive input

of the opamp is not connected to the ground. In general, the condition in which the

differential input of an opamp has zero value is referred to as virtual ground condition.

The same functionality can be implemented using zero-crossing-based circuits

(ZCBC) as shown in Figure 2-2 and proposed by [20],[21],[23],[24]. The opamp is

replaced by a combination of a current source and a zero-crossing detector. Unlike an

opamp that continuously forces virtual ground condition, ZCBCs detect the virtual

ground condition. To do this, the output starts from one extreme voltage (Vdd or

ground) and swings toward the other extreme voltage. The zero-crossing detector

continuously monitors its differential inputs. When the virtual ground condition is

detected, it stops the output swing. If the detector has no delay, the shape of the



output voltage waveform does not affect the accuracy of the circuit. If the zero-

crossing detector has a constant delay, the overshoot of the output voltage depends

on the delay and the slope of the output voltage when virtual ground condition is

detected. In this case, a linear output waveform yields the best performance because

with a constant delay and a constant slope at the output, the overshoot is always

constant. Many analog circuits including ADCs and filters tolerate a constant offset

at the output voltage as long as the output does not saturate.

In Figure 2-2, an analog input is sampled across C1 and C2 in a sampling phase

(phase 1). In the charge-transfer phase (phase 2), the input is amplified. To do so,

the output is preset first. Then, the current source turns on. Since the current source

provides a constant current and the load is capacitive, the output voltage is a linear

ramp. The zero-crossing detector opens the sampling switch of the next stage when

virtual ground condition is detected.

One difference between ZCBCs and opamp-based circuit is the way the output can

be sampled. While the output of opamp-based circuits is ready for sampling during

phase 2 of the current clock cycle and phase 1 of the next clock cycle, the output of

ZCBCs can be only sampled during phase 2 of the current clock cycle.

Phase 2

V
0
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C1
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i 
t

Figure 2-1: Basic opamp-based amplifier.
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Figure 2-2: Basic zero-crossing based amplifier.

2.1 Advantages of ZCBCs

ZCBCs have several advantages. One important advantage is its lack of explicit

feedback. Since opamp-based circuits have negative feedback and more than one

pole, the stability of the circuit is an important issue, and often requires large power

consumption. If the load or the feedback ratio of the circuit is variable, the frequency

compensation should be designed for the worst case situation. In ZCBCs, since there

is no explicit feedback, there is no stability concern even with widely varying load

and feedback condition.

While the speed of transistors improves in the new technology nodes, the intrinsic

gain of transistors degrades. Since large open-loop gain is desired for opamps, the

design of opamps is more challenging in new technology nodes. One method to

increase the gain is by cascading several gain stages which deteriorates the stability

of the system because of more poles. Another method to increase the gain of an

opamp is cascoding which is challenging with low supply voltage in new technology

nodes. As a result, opamp-based circuits are harder to design in new technology

nodes. ZCBC is more suitable for new technology nodes since the current source and



the zero-crossing detector can be optimized independently. Zero-crossing detector can

use cascaded stages for higher gain since stability is not a concern.

Finally, the power consumption of ZCBCs scale with the sampling frequency.

This is due to the fact that once virtual ground condition is detected, all parts of

the analog circuit including the current sources and zero-crossing detector turn off

and the circuits do not consume static power any longer. As a result, if the circuit

operates at a much lower speed, the power consumption scales accordingly. The power

consumption of opamp-based circuits can also scale by adjusting its bias currents.

However, the power consumption of ZCBCs can be adjusted for a very wide range of

sampling frequencies.

2.2 Sources of Nonlinearity

There are several sources of nonlinearity in ZCBCs [23]. The first source of nonlin-

earity is the delay of the zero-crossing detector. The delay causes an overshoot at the

output. If the output is a linear ramp, a constant delay of zero-crossing detector gen-

erates a constant overshoot and can be treated as a constant offset. However, delay

variation of zero-crossing detector from one clock cycle to another (for example, due

to common-mode variation) causes overshoot variation, which causes an error at the

output.

In new technology nodes, the output resistance of current sources are low. As

a result, when the output voltage changes, the current of the current source does

not stay constant and the slope of the output voltage does not stay constant either.

The nonlinearity of current sources causes signal-dependant overshoot variation. This

gives a similar effect to that of finite gain in opamps. In addition, voltage-dependent

capacitive load introduces nonlinearity at the output ramp, which causes overshoot

variation. In this chip, the size of the linear capacitive load is much larger than the

nonlinear parasitic capacitors. The delay of the zero-crossing detector is also sensitive

to the common mode voltage variation and the ramp rate at its input.

In opamp-based circuits, the current that passes through the sampling switches



approaches to zero with time. As a result, the voltage drop on the sampling switches

is negligible. In ZCBCs, the current that passes through the sampling switches stays

constant during the sampling period. As a result, there is a voltage drop across the

switches during the sampling time. If the output current source provides a constant

current and the switch has a constant resistance, the voltage drop is constant and

causes an offset. However, current sources have a limited output resistance (especially

in new technology nodes). In addition, the resistance of switches changes widely with

the input voltage; as a result, there is a variation on the voltage drop of the sampling

switches, which causes an error at the output and the corresponding nonlinearity.

2.3 Solution to some Challenges

There are several techniques to improve the linearity of ZCBCs. One technique is

to use multiple ramps as opposed to one [23]. The first ramp is a coarse search

for virtual ground, and the next ramp(s) is (are) fine search. Since the ramp rate

decreases after the first ramp, there is less sensitivity to the delay variation of the

zero-crossing detector. The overshoot is also smaller because of slower ramp rate,

which corresponds to a smaller error at the output and a smaller offset.

Another technique to improve the linearity of ZCBCs is to split the output current

source in three sections [24] as shown in Figure 2-3. The output current source of

the first stage (10) should drive the capacitive load of the first stage (Cn in series

with C12) and the input capacitance of stage 2 (C21 in parallel with C22). A large

current that charges C21 and C22 passes through switch 1 and switch 2 and causes a

large voltage drop on those switches. Two current sources (I1 and 12) are added after

switch 1 and switch 2 to provide the current to capacitors C21 and C22 and 1o is reduce

to provide current only to the capacitors in stage 1. In case of mismatch between 1o,

I1, and '2, the mismatch current between the current sources passes through switch

1 and switch 2. The mismatch current is much smaller than the total current. Note

that I1 and I2 are controlled with the same signal that controls 1o. Since the current

that passes through the switches reduce, the voltage drop and its variation reduce as
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Chapter 3

System Architecture and

Implementation

In this chapter, the architecture of the system is described and it is shown how

different functionalities are implemented. Then, the implementation of individual

circuit blocks is reviewed. A new technique is described to implement the termination

resistor in the filter. In addition, asymmetric differential signaling is introduced which

increases the dynamic range of the signal. Finally, full system simulation for a 10-bit

ADC and a third-order Butterworth filter are presented.

3.1 System Description

Figure 3-1 shows the block diagram of the ideal system. It consists of configurable

analog blocks, programmable switches, and the configuration block. Configurable

analog blocks have both amplification and integration functionality. Unlike digital

FPGAs, the required connectivity of analog blocks is limited (both in terms of number

of connections and the distance between source and destination blocks). As a result,

the switches are placed only between adjacent blocks.

Figure 3-2 shows how an opamp-based switched-capacitor circuit can either am-

plify or integrate the input signal. If the input signal is sampled on both capacitors
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Figure 3-1: Block Diagram of an Ideal System.

during phase 1, the total charge across the capacitors in phase 1 is given by:

Q[n] = (C1 + C2 )1i[n] (3.1)

The charge on C1 is transferred to C2 in phase 2. The output at the end of phase 2

is:

Vot[n + 1/2] = 2V. 1 [n]
C2

(3.2)

Thus, the circuit performs amplification during phase 2.

If the input signal is only sampled on capacitor C1 without resetting the integration

capacitor (C2), the charge on capacitors C1 and C2 are given by:

Qc1[n] = C1 V%1 [n]

Qc2[n] = Qc2[n - 1/2]

(3.3)

(3.4)

The charge on C1 is transferred to C2 in phase 2. The output at the end of phase 2

10

swfth
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is:

C1 Vi 1 [n] + QC2 [n - 1/2] -C
Vo0 tn-+ 1/2- 0 2 -C2%1[n] + Vut[n - 1/2] (3.5)

C2 C2

Thus, the circuit performs integration.

Figure 3-3 shows the building block of a pipeline ADC. It has a set of bit-decision-

comparators (BDC) and reference voltages in addition to the basic circuit of Figure

3-2. The circuit samples the input across both capacitors during phase 1. BDCs

operate as the sub-ADC for each stage of a pipeline ADC. The sampled input voltage

is amplified during phase 2. Vref1, Vef 2, and Vref 3 are related to the outputs of the

DAC in each stage of a pipeline ADC which are controlled by the outputs of BDCs

and added to the output. The output voltage is given by:

C1 + C2 []C C1 + C2(V[n]v) (36)
Von + 1/2] 2C2 C2

where VDAC is the desired voltage of the DAC in each stage of a pipeline ADC, and

Vefx is one of Vref1, Vref 2 , and Kef 3 depending on the outputs of the BDCs. The

output of the BDCs are also used to generate the final digital code for the sampled

input.

Similarly, Figure 3-4 shows the building block of a low-pass filter. It samples

two inputs that are being added and integrated. With differential implementation of

these blocks, inverting a signal can be easily performed by switching the polarity of

the differential signal.

Figure 3-5 shows the connectivity of five integrating blocks that form a fifth-order

low-pass filter. The exact transfer function of the filter depends on the integration

coefficient of each block.

3.1.1 The Need for ZCBC Implementation

Implementing the system with opamps raises two concerns. One is that in a highly-

programmable system, the output load of the opamp is not known a priori. As a
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Figure 3-2: Amplification and integration using the same switched-capacitor circuit.
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Figure 3-3: Building block of a pipeline ADC.

result, the frequency compensation must be designed for the worst-case load and

feedback conditions. This greatly compromises speed and power consumption. An-

other concern with opamp-based circuits is the power consumption while the operat-

ing frequency changes. Opamps consume static power and are often optimized for a

particular speed. In a reconfigurable system, the required sampling rate may change

from one application to another. If the building blocks of the system use opamps, the

power consumption of the system does not scale with sampling frequency for a wide

range of sampling frequencies. To address both of these concerns with opamp-based

circuits, zero-crossing based circuits (ZCBCs) have been used in the proposed system.
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Figure 3-5: Schematic of an active ladder filter.

3.1.2 Implementation of a Reconfigurable Stage

Figure 3-6 shows the basic building blocks of each reconfigurable stage. It includes

two sets of sampling capacitors (C1 and CO) as needed during the filter functional-

ity. During the ADC functionality, only C1 is active. A zero-crossing detector and

its corresponding current sources are used instead of an opamp. BDCs that con-

trol reference voltages are active for ADC functionality. For simplicity 3 BDCs and

reference voltages are shown, but the real implementation contains 5 BDCs and refer-

ence voltages. Seven programmable capacitors (Cfl-Cf7 ) are placed in the feedback,

which provide a reconfigurable integration coefficient. Gate-boosting blocks are used

to lower the resistance of the reconfigurable switches. The analog input of the gate-



boosting blocks is buffered to reduce the effects of its capacitive load on other blocks.

All circuit components are reviewed in the next sections. The schematic is shown as

single-ended for simplicity, but it is implemented differentially.

Figure 3-6: Basic building block of reconfigurable stage.

3.1.3 ADC Configuration

In the pipeline ADC configuration, 5 BDCs provide 2.6-bit quantization for each stage

(which includes 0.6 bit over-range protection). For example, cascading five stages

provides 10-bit resolution. Each stage has digitally-configurable feedback capacitors

(Cf I-Cf) which provide programmable integration-coefficients for filter functionality.

While these capacitors are not active in an ADC configuration, their parasitic capac-

itors increase the capacitive load at the output. As a result, the power consumption



increases too. The programmable capacitors for the filter may be 10 to 20 times

larger than the ADC capacitors, resulting in parasitic capacitors that are comparable

in value to the ADC capacitors. Configurable switches are placed on both sides of

the feedback capacitors to isolate their parasitics from the rest of the stage. Switches

are bootstrapped to reduce their size and parasitic capacitance since bootstrapping

reduces the ON resistance of the switch. To avoid any disturbance on the virtual-

ground node, it is buffered by a source follower before feeding into the bootstrap

block. While most circuits are shown as single-ended, the actual implementation is

differential.

3.1.4 Filter Configuration

In the filter configuration, Vi1 and Vi 2 are sampled across the sampling capacitors

C1 and Co. The binary-weighted reconfigurable feedback capacitors are connected

to configurable switches, which determine the integration ratio. Table 3.1 shows the

ratio of the integration capacitor to the sampling capacitor for several different filters

if the sampling frequency is 50MSPS and the cut-off frequency is at 1MHz. The BDCs

are turned off and only one of the reference voltages is used during the operation.

Table 3.1: Ratio of feedback capacitor to the sampling capacitor for each stage of

filter and different types of filters.

Filter Type Stage 1 Stage 2 Stage 3 Stage j Stage 5

1 st order Butterworth 15.9

2 nd order Butterworth 11.3 11.3

3rd order Butterworth 7.9 15.9 7.9

4 th order Butterworth 6 14.7 14.7 6

5 th order Butterworth 4.9 12.9 15.9 12.9 4.9

5th order Chebyshev 16 8 23 8 16

3.2 System Components

In this section, the main building blocks of each stage are reviewed.



3.2.1 Sampling Circuit

The main criteria for designing a sampling circuit are sampling noise, input band-

width, input voltage swing, and distortion. Bottom-plate sampling is used to reduce

signal-dependent distortion [25] as shown in Figure 3-7. In Figure 3-6, these are the

switches that are closed in phase 1.

Vin Vout
ld T

Figure 3-7: Single-ended bottom-plate sampling circuit.

The size of the sampling capacitor can be calculated based on the kT/C noise

budget of sampling circuit (which is reviewed in more detail in Chapter 4). The

3dB cut-off frequency of the sampling circuit is a function of switch resistance and

sampling capacitance as shown in Equation 3.7. The 3db frequency is set to be larger

than the signal bandwidth.

f3dB - (3.7)
27rRswitchC

Another concern is the input-dependant resistance of the sampling switch. Smaller

input voltage swing causes less resistance variation at the cost of lower dynamic range.

In opamp-based circuits, the current that passes through the switches approaches zero,

but in ZCBCs, the current stays constant until the sampling moment. As a result,

resistance variation of the two switches causes output voltage variation in ZCBCs.

The resistance of the top-plate switch changes due to changes in V". The resistance

of the bottom-plate switch changes due to changes on common-mode voltage (here

shown as ground).

The top-plate and bottom-plate switches can be implemented in different ways, in-

cluding regular NMOS, high-voltage NMOS, regular transmission gates, transmission



gate with high-voltage NMOS, and bootstrapped NMOS as shown in Figure 3-8.

_i_ Bootstrap Vgs = Constant
Block

_n_ _n_ rL
NMOS High-Voltage T T Bootstrapped

NMOS Transmission Transmission NMOS
Gate Gate with

high-voltage
NMOS

Figure 3-8: Possible switches for signal sampling.

The resistance of a switch is given by Equation 3.8 [26].

1
Ro = 1(3.8)

" pnCoxl (VGS - VTH)

where VTH is given by Equation 3.9 [26].

VTH =VTHO + I2 2FI) (3.9)

VTHO is the threshold voltage when body-biasing is zero (VSB = 0), y is the body effect

coefficient, 0F=(kT/q)ln(NSb/i), and VSB is the source to bulk potential difference.

The resistance variation is mainly due to variation in VGS, since VTH variation is

attenuated by the square root and -y in Equation 3.9. With regular NMOS, the gate

voltage is 1V (Vdd=1V) when the transistor is on. If the input signal has a large swing

(for example between 0.25V and 0.75V), the switch resistance increases as the source

voltage increases. If high-voltage NMOS is used, the gate voltage is 2.5V (Vda=2.5V

for high-voltage NMOS) when the transistor is on. As a result, the changes in source

voltage correspond to less variation in VGs (percentage-wise). However, high-voltage

devices require much larger area, have larger parasitic capacitance, and require a level

converter so that a control signal in Vdd 1V domain is converted to Vdd = 2.5V

domain. The conversion itself increases the delay of the control signal and increases

power consumption, which is not desired.

Transmission gate provides good conductivity for voltages close to ground or Vdd



where one of NMOS or PMOS are very conductive. However, for a signal near Vdd/ 2 ,

the transmission gate has a large resistance variation.

Bootstrapping provides a nearly constant VGS across the switch. This implies

that when the source voltage is large (for example 0.7V), the gate voltage exceeds

the supply voltage (for example 1.7V). Since V., and Vd do not exceed Vdd, the

large gate-voltage does not cause reliability problems. The switch resistance still

varies due to changes in the threshold voltage due to the back-gate effect. In this

system, bootstrapping is used. Figure 3-9 shows the resistance variation of different

switches (the resistance of all switches are normalized). Figure 3-9 shows that the

resistance of an NMOS switch changes by a factor of 1000. The resistance of a high-

voltage NMOS changes by a factor of 2.8. A regular, and a high-voltage transmission

gate have resistance variation by a factor of 18, and 1.8. Bootstrapped NMOS has

resistance variation by a factor of 1.4.

Resistance Variation of Switches
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The input voltage of the switch (at the source of transistors) (V)

Figure 3-9: Resistance variation of different switches.



3.2.2 Bootstrapping

Figure 3-10 shows the bootstrap circuit [27] and Figure 3-11 shows the waveforms of

some voltages (from simulation). It has two inputs, V and Clk. When Clk is high,

transistor M1 is on and pulls down voltage VI to zero. Transistor M9 and M8 are

also on and pull down V0,t to zero, which turns on transistor M2 and charges voltage

V2 to Vdd. The capacitor is charged to Vdd. Transistor M4 is also on which keeps M7

off. Transistor M3, M5, and M6 are also off.

When Clk is low, Transistor M1, M9, and M8 are off. Transistor M3 turns on

which turns on transistor M7. As a result Vst is connected to V2. Since V2 was

charged to Vdd when Clk was high, transistor M6 turns on and connects Vin to V1.

Since V,, is connected to one side of the capacitor and V0st is connected to the other

side, V0ot = Vin + Vdd. If Vout is connected to a gate of a transistor and i, is connected

to the source (Figure 3-8), VGS is held constant at Vdd.

a

V2

V1

Clk
I
M9

Figure 3-10: Schematic of bootstrap circuit.
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Simulation of Bootstrapping Block
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Figure 3-11: Simulation of the bootstrap circuit.

3.2.3 Zero-Crossing Detector

Zero-crossing detector replaces the opamp in opamp-based circuits to detect the vir-

tual ground condition. When it detects, zero-crossing detector turns off the sampling

switches of the next stage and the output current sources in its own stage. The

schematic of zero-crossing detector is shown in Figure 3-12 [24]. The first stage con-

sists of a differential amplifier and the second stage is a dynamic inverter [28]. Its

operation is based on the fact that V,, is pre-charged to a voltage larger than the

virtual ground and ramps down linearly, and Vi,, is pre-discharged to a voltage less

than the virtual ground and ramps up linearly. When /,p is high and Vi, is low, V 1

is high. As V,, ramps down and Vi,,n ramps up, the voltage at V 1 starts to reduce.

The second stage monitors V 1 and when it passes the threshold voltage of transistor

M21, it pulls up K72 and pulls down Kecont. The signal Enb is used to preset V 2 before



the detection starts. When V 0st is low, the current source of the first stage turns off

to save power. It turns on before the next detection starts. In the first stage, the

active load is binary-weighted and programmable to adjust the offset of the detector.

Offset of the zero-crossing detector is mainly due to the mismatch of the transistors

in its first stage. Process variation also affects the threshold voltage of the second

stage of the zero-crossing detector. The offset of the zero-crossing detector causes

an overshoot at the output voltage. In other words, the offset of the zero-crossing

detector causes an offset at the output voltage. Table 3.2 shows some of the possible

offset adjustments. When a binary-weighted load is connected, it is shown by code

1, and when it is disconnected, it is shown by code 0.

First Stage Second Stage

Enb - -Enb

Vo1 M21 M21 Vcont

Vinp -[ |-Vinn Enb -Vo2

Iref

Figure 3-12: Schematic of zero-crossing detector.

3.2.4 Current Sources

In an ADC configuration, the output voltage is sampled by the sampling switches.

After the output of a stage is sampled, the voltage on its sampling capacitors and

feedback capacitors are not needed any longer. In comparison, in a filter configura-

tion, since each stage is integrating its inputs, the current voltage of the integrating



Table 3.2: Offset adjustment
the first stage.

of ZCBC detector based on the programmable load of

capacitor is needed in the subsequent clock cycles. As a result, the output current

sources should turn off quickly when the zero-crossing is detected. Figure 3-13 shows

the schematic of the current source. The current source is required to turn on and

off very quickly, which can be done either by controlling the gate of transistor M1 or

M2. Since the output current of the current source is mainly determined by transis-

tor M1, the control signal is applied to the gate of transistor M2 so that the settling

time of the gate voltage is less important. The linearity of the current source affects

the linearity of the system [23]. Transistors with long channel length and cascoded

architecture are used to improve the linearity.

Iref

m ---- -

lout
V \cas cont

M2

M1i

Figure 3-13: Schematic of a basic current source.

Load on the positive leg Load on the negative leg Input Referred Offset
101 101 0mV
111 111 3mV
011 011 -10mV
101 011 -60mV
101 010 -100mV
101 111 +40mV



3.2.5 The first Stage

The level of the input voltage in the first stage is 0.25V-0.75V for both inputs of the

differential signals. The input level of all other stages is 0.4V-0.91V on the positive

input and 0.09V-0.6V on the negative input. As a result, the threshold voltage of

BDCs and the reference voltages are adjusted accordingly for the first stage (it is

shown in the residue plots in Figure 3-16 and Figure 3-17).

Since the output of all stages are linear ramps, the sampling switches conduct a

relatively constant current to the sampling capacitor. As shown in Figure 3-14 and

proposed in [24], an additional current source is added after each switch to provide

a large portion of the current to the sampling capacitor. This technique reduces

the current that passes through the sampling switch and reduces the corresponding

voltage variation across the switch. Since the first stage samples its input from a

regular voltage source (without ZCBC operation), the corresponding current sources

are not needed.

3.2.6 Bit-Decision-Comparators (BDC)

Wide range of latched comparators have been developed [15],[29],[30]. Figure 3-15

shows the schematic of the bit-decision-comparator in this system (which is proposed

by [31]). The differential input is sampled across the sampling capacitors in phase 1

(Clk = 0), while all internal nodes are pre-charged to Vdd. In phase 2, the sampling

capacitors are connected to the reference voltages. Transistor M1 and M2 start to

discharge Vt and Vtb. If one of the output voltages is discharged more quickly

(for example Vutb), it disconnects the other output voltage (Vst) from the lower

transistors (M2). A regenerative action helps both V0st and Vtb to reach their final

voltage quickly. The mismatch of transistors and capacitors causes an offset in the

BDC. Two binary-weighted capacitors are added as the load to adjust the offset. Table

3.3 shows the offset for different load connection when the common-mode voltage is

500mV. The offset adjustment is to be used when the offset is larger than the over-

range protection. In this design, the BDC offset is adjusted manually for each stage.
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Figure 3-14: Basic building block of reconfigurable stage.

3.2.7 Residue Plot

Figure 3-16 shows the input-output relationship of each stage in ADC configuration

(residue plot) for the positive input of the differential signal. The expected range of

the input is from 0.5V to 0.833V. Two extra bit-decision-comparators are added (with

threshold voltage of 0.5V and 0.833V) to increase the input-range to 0.4V-0.92V. The

added margin is the over-range protection at the input. The output is expected to

swing between 0.5V and 0.833V and stays linear from O.4V to 0.92V. Based on the

residue plot, five bit-decision-comparators are needed for each stage. The offset of

BDCs should be less than 27mV otherwise the output may saturate.

Analog
Buffer



6fF

Figure 3-15: Schematic of a bit-decision-comparator.

Table 3.3: Offset adjustment of bit-decision-comparator.

Load on the positive leg Load on the negative leg Input Referred Offset

OfF OfF 0mV
3fF OfF -14mV

6fF OfF -27mV

9fF OfF -36mV

9fF 3fF -22mV

3.2.8 The Analog Buffer

The schematic of the analog buffer is shown in Figure 3-18. If a regular source follower

is used, the voltage drop of the source follower reduces the level of the output voltage.

The output of the analog buffer drives a bootstrapping block. If the analog buffer

has a voltage drop, the same voltage drop appears at the output of the bootstrapping

block, which drives the gate of a reconfigurable switch. As a result, the voltage drop of

the source follower in Figure 3-6 causes lower overdrive voltage for the corresponding

reconfigurable switch. A large capacitor is included in series at the output of the

analog buffer to adjust its output level. In phase 1, when each stage is sampling its

input, the input of the analog buffer is connected to Vcm (Figure 3-6). During this

phase, Vcm is also connected to the output capacitor of the analog buffer and samples

the voltage drop of the source follower across the capacitor. In phase 2, when the

6f
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Figure 3-16: Residue plot in ADC configuration.

sampled signal is being amplified or integrated, V0 t of the analog buffer tracks its

Vm without any voltage drop because the voltage drop of the source follower is added

back by the output capacitor.

3.2.9 Terminating Resistors

In a filter configuration, the terminating resistors at the input and output stages are

implemented by adding an additional local feedback, which samples the output of the

stage and subtracts it from the input in the next clock cycle (as shown in Figure 3-5).

This implementation requires an additional set of sampling capacitors (C, 2 in Figure

3-19a) when implemented in opamp-based system. In ZCBC implementation, the

local capacitor must sample the output at the same time as it is connected to the input

for integration. This timing conflict requires a second set of capacitors, so that one

set samples the output while the other set is connected to the input for integration.

A highly-programmable system requires such a block in every configurable stage.

However, the implementation of the block is expensive in terms of required area,

additional parasitics, and more complex control signals. A new technique is shown
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Figure 3-17: Residue plot of the first stage in ADC configuration.

in Figure 3-19. Figure 3-19a shows the original opamp-based implementation, where

the output voltage is sampled across a unit-size capacitor and then subtracted from

the input in the next cycle. The same output voltage is also sampled on the feedback

capacitor. The input-output relation of the stage is shown by Equation 3.10.

Vout[n + 1] = Vut[n] + -(Vin[[n] - Vin2[n] - Vout[n])
A

(3.10)

Figure 3-19b shows the new circuit which performs the same functionality by

splitting the feedback capacitor into two capacitors, one of which has a unit size.

Instead of subtracting the output of the stage from the input in the next cycle, the

unit-size capacitor in the feedback is discharged. The charge across both feedback

capacitors before discharging the unit capacitor is:

Q [n] = (A - 1)Vot[n] + Vout[n] = AVut[n] (3.11)

If the unit size capacitor is discharged right before the integration, the total charge

3/12 4/12 5/12 6/12 7/12 8/12 9/12

=0.25 =0.33 =0.41 =0.5 =0.58 =0.67 =0.75
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Figure 3-18: The schematic of the analog buffer.

on the feedback capacitor is:

Q[n] = (A - 1)Vot[n] + 0 = (A - 1)Vst[n] (3.12)

After the unit size capacitor is discharged, it is connected back to other feedback

capacitors. The new output voltage is:

Voutnew[n] = A -Vot[n] (3.13)

The output voltage after integration is given by Equation 3.14 which is the same

as Equation 3.10.

AjVn-i1-11n21lVout[n + 1] = A Vut[n] + (Vin[n] - Vin2[n]) (3.14)
AA

Since there are already binary-weighted capacitors in the feedback with the cor-

responding switches, this technique does not require any additional capacitors or

switches to implement terminating resistors. The only additional component is the

switch to discharge the unit-size capacitor (which is very small). Using this technique,

all stages can implement the terminating resistors without any penalty.
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Figure 3-19: Implementation of terminating resistors in ladder filters.

3.3 Asymmetric Differential Signaling

Traditionally, differential signals have the same swing on the positive and negative

direction. Figure 3-20 shows the signal swing at the output of each ZCBC block. If the

output current source stays on, the output ramps linearly till it reaches the saturation

region. ZCBCs are linear only if the output stays within the linear ramp region [23].

In Figure 3-20, Vst is linear when it ramps up from OV to 0.7V and Vst, is linear

when it ramps down from 1V to 0.3V. With symmetric differential signaling, each of

Vut, and Vutn can only swing between 0.3V and 0.7V. This indicates that the linear

output range where Vut, ramps from 1V to 0.7 and Votn ramps from OV to 0.3V is

not utilized. With supply voltage as low as 1V, the unutilized linear region makes up

42% of the total linear region. Asymmetric output swing is employed to utilize the

full linear range of the output. Reference voltages are chosen from the residue plots

(Figure 3-16 and Figure 3-17) so that they support the asymmetric signal range.
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Figure 3-20: Signal swing in zero-crossing based circuits.

3.4 Programmability

The programmability of the system falls in three categories, functionality, calibration,

and power optimization.

3.4.1 Programmability for functionality

Each stage can be programmed to perform either integration or amplification. The

integration coefficient is determined by the ratio of the integrating capacitor to the

sampling capacitor. Programmable binary-weighted integration capacitors provide

the desired integration coefficient. In filter configuration, an additional local feedback

loop is required in the first and the last stage to implement the terminating resistor.

The terminating resistor can be programmed to be active or inactive as needed.

Similarly, BDCs can be turned off if not needed (for filters). Each stage has two

sets of sampling capacitors. Depending on the functionality, one or both sampling

capacitor is activated.



3.4.2 Programmability for Calibration

If the ramp rates at the output of one stage matches the ramp rate at the input of the

next stage, smaller current passes through the top-plate switches and the distortion is

reduced. The ramp rate depends on the ratio of current sources and load capacitors.

The ramp rate can be adjusted by programmable binary-weighted current sources to

compensate for changes in capacitive load in different configurations. In addition, the

offset of BDC and zero-crossing detector can be adjusted.

Figure 3-21 shows the timing of phase 1 and phase 2 of the clock and the pulses at

the beginning of each phase. Non-overlapping clocks are used in this system. At the

same operating speed, a large non-overlap period results in smaller period for phase

1 and phase 2. Hence, a very small non-overlap period would be ideal. However,

since the clock tree has skew and jitter, the non-overlapping period increases the

skew and jitter tolerance of the system. In this system, the non-overlapping period

is programmable to compensate for clock skew without introducing excessive margin.

The non-overlap period can be adjusted from 100ns to 400ns (in 100ns steps).

Non-overlappnig
Pulse Duraton Period

Phase 1

Pulse 1

Phase 1

Pulse 2

Figure 3-21: Timing of different phases of clock and pulses.



ZCBC architectures use short clock pulses at the beginning of both phase 1 and

phase 2 to initialize the operation. The strength of the switches that perform pre-

charging or pre-discharging may vary due to process variation. Similarly, the ca-

pacitive load of such nodes may vary. As a result, a programmable pulse period is

implemented to compensate for such variation. Each pulse can be programmed to be

from 100ns to 800ns (in 100ns steps).

The bias voltage for NMOS and PMOS transistors in cascode and the common-

mode voltage can be either generated on-chip or provided off-chip. It is more desirable

to generate these voltages on-chip to avoid the effects of bond-wire inductance. A

7-bit digital-to-analog convertor (DAC) generates each voltage.

3.4.3 Programmability for Power Optimization

If analog connectivity between some stages is not needed, the corresponding switches

can be programmed to stay off. In addition, the clock and reference currents of unused

stages can turn off to save power. The current source of any circuit block in each

stage can turn off if the block is not needed. For example, in the ADC configuration,

the zero-crossing detector of the last stage of pipeline ADC can turn off during the

whole operation. Finally, digital output of each stage can be turned off if not needed.

3.5 System Simulation

The system is simulated with Spectre and the output is sent to Matlab for more

analysis. In an ADC configuration, near Nyquist-rate sinusoid is applied to the input

of the system and transient simulation is performed. The output of the transient

simulation is sent to Matlab to analyze the frequency response.

To ensure that the simulation setup is appropriate, the system was first imple-

mented with ideal elements using VerilogA models. Simulation settings such as an

absolute and relative tolerance of voltages and currents and maximum time step are

adjusted in this phase for 13-bit accuracy. Then, different components are replaced

with the real implementation one at a time to evaluate the performance of each block.



Some voltages, such as supply voltages and reference voltages, are expected to stay

constant. However, high-frequency activities in the system disturb these voltages

when the voltages are provided off-chip due to the inductance of the bond-wires.

The bond-wire model is added to the simulation so that the disturbance of these

voltages and its effects on system performance can be estimated. The power supply

model is shown in Figure 3-22 where R is 50ohm and L is 2nH. The disturbance

can be mitigated by adding on-chip decoupling capacitors. The required size of the

decoupling capacitors is estimated from the simulation.

R L

1V 
Vdd

Figure 3-22: The power supply model.

The performance of pipeline ADC can be estimated from the performance of the

first stage by measuring the distortion of its analog output voltage. This approach

reduces the simulation time and is suitable for early simulations. Including all stages

in simulation slows down the simulation significantly, but has several advantages.

One advantage is that it confirms that the stages work properly together. In addi-

tion, all stages show their disturbance contribution to the reference voltages and the

performance of the system can be measured more accurately.

Figure 3-23 shows the simulated performance of the ADC when a near Nyquist-

rate sinusoid is applied. For this simulation, the ADC consists of five stages, each

with 2.6-bit quantization level. The system has 10.6-bit quantization levels. The

simulation includes the real implementation of all stages (as opposed to analyzing

the overall performance based on the performance of the first stage). The simulation

also includes the bond-wire model to account for transients on constant voltages, but

it does not include device noise and capacitor mismatch. The simulation results in



effective number of bits (ENOB) to be 9.8-bit (which shows the linearity of each stage

in this configuration). Adding the device noise, ENOB degrades further to 9.03bits.

The transient simulation contains 64 clock cycles. Repeating the simulation with 256

clock cycles resulted in similar results suggesting the low number of the clock cycles

does not cause inaccuracy.
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Figure 3-23: Simulated ADC performance when a near Nyquist-rate input is applied.

Integral nonlinearity (INL) is the deviation of the actual output from the ideal

output. The proper method of measuring INL is by applying a low-frequency sinusoid

to the ADC, gathering the outputs over a large number of clock cycles, and performing

statistical analysis [33]. However the system simulation for such purpose takes a

prohibitively long time. In addition, during the simulation, the exact value of the

input signal is known which can be used to better estimate the INL. The INL of the

system is estimated based on the transient simulation with 64 clock cycles and shown

in Figure 3-24. This simulation provides a rough estimate of the INL based on very

limited sampling points.

To evaluate filter functionality of the system, it is programmed as a 3rd order

Butterworth filter. Separate transient simulations are performed at different input

frequencies. The frequency response of the filter is shown in Figure 3-25.
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Chapter 4

Noise Analysis

During the design, the noise of the system should be estimated to ensure it is within

the noise budget. The goal of this chapter is to estimate the noise when the chip is

configured as an ADC and as a filter. In this chapter, the noise is reviewed briefly.

Then the noise of a 10-bit ADC is estimated. After that, the noise of a third-order

Butterworth filter is calculated. In each of the ADC and filter configurations, the

main sources of noise are determined, and their contribution to the overall noise is

calculated.

4.1 Noise Review

The noise of comparator-based switched-capacitor (CBSC) circuits has been analyzed

in detail [21] [22]. [22] shows that the main two sources of noise are the sampling noise

(kT/C), and the noise of the preamplifier in a CBSC comparator. The noise of other

circuit blocks such as current sources and switches has been also analyzed and shown

to have significantly lower noise contribution. [22] also shows that the noise of the

comparator-based system is non-stationary (meaning at least one of the mean and the

standard deviation is time-dependant). The noise of different circuit blocks has been

calculated twice, once when the circuit is in steady-state, and another time when

the circuit it is not in steady-state. It has been shown that while the assumption

of steady-state condition is more accurate. In out system, since the zero-crossing



detector is using a wide-band pre-amplifier, steady-state analysis is accurate.

Since the purpose of this chapter is a first-order estimate of noise in the system,

the noise is assumed to be stationary. In addition, only the dominant sources of noise

are taken into account.

4.1.1 Sampling Noise (kT/C Noise)

Figure 4-1 shows a basic sampling circuit where an NMOS transistor is used as a

switch. When the transistor is on, the voltage across the capacitor tracks the input

voltage. The resistance of the transistor creates thermal noise which can be expressed

by Equation 4.1 [15].

Sn,R(f) nR(f) = 4kTR (4.1)

where k is Boltzmann constant (1.38x10- 23 J/K), R is the ON resistance of the

transistor when it is on, and T is temperature in degrees Kelvin. The thermal noise

is a white noise and can be modeled as a voltage source of V,R(f) in series with a

noiseless resistor as shown in Figure 4-2. The total mean-square noise is the integral

of Sn,R(f) over all frequencies as shown in Equation 4.2. Note that the integral is

infinite if the noise is not filtered. In practice, the noise is always filtered either by

capacitive load at the output or by parasitic capacitances.

Sample

Vin r\VC

Figure 4-1: A basic sampling circuit.

V,2 = j SnR(f)df (4.2)



Noiseless Resistor

Vn,R Vout

Figure 4-2: Circuit model of the noise of a sampling circuit.

The input signal is suppressed in Figure 4-2 to calculate only the noise contribution

at the output. The noise of the resistor, Vn,R, is filtered by the low-pass RC circuit.

The transfer function from V,,R to V0ut is given by Equation 4.3.

Vo>s) R 1 (4.3)
Vn, R ROs + 1

The noise power spectral density is shaped by the transfer function. The output noise

spectral density can be written as Equation 4.4 [26].

S0OU() - nR lvout 1j7f 2=4T (4.4)
n R Sn,R(f) .(rf)| 2  4 kTR( 2,f RC)2 + -

The total mean-square noise is the integral of the output noise density over all fre-

quencies as shown in Equation 4.5.

/00 kT
' j 4kTR (27f RC)2 + 1 df C(4.5)

While the noise is generated by the resistor, the overall noise is only a function of

the sampling capacitance. This is due to the fact that the noise spectral density is

proportional to the resistance value, but the cut-off frequency of the filter is inversely

proportional to the resistance value. It is important to note that while the total mean-

square noise only depends on the capacitance, the power spectral density (PSD) still

depends on the resistance of the switch. This is important if thermal noise is further

filtered by a subsequent circuit. In such cases, the total mean-square noise depends



on the power spectral density of the noise and the bandwidth of the whole circuit.

When the switch is still closed in Figure 4-1, kT/C noise appears across the

capacitor. When the switch is opened, the noise is sampled across the capacitor. The

sampling noise (kT/C) can be reduced either by lowering the temperature (which is

not typically a design option) or increasing the size of the sampling capacitor.

4.1.2 Effective Number of Bits (ENOB) and Figure of Merit

(FOM)

When an analog signal is quantized, a quantization error is introduced which is the

difference between the analog input signal and the digital output signal. For an ideal

ADC, the mean square quantization error is given by Equation 4.6 [34].

V2-(A/2 N2 246
q 12

where A is the full-scale range of the ADC and N is the number of quantization bits.

The quantization error is one of the factors that limits the signal-to-noise ratio (SNR)

of an ADC. It is shown that for an ADC with large number of bits (for example 10

bits or higher), quantization error can be treated as white noise if sampling is non-

coherent [35]. If a sinusoidal signal with an amplitude of A/2 is applied to an ideal

ADC with N-bit quantization, the signal-to-noise ratio is shown by Equation 4.7 [34].

SNR = N * 6.02dB + 1.76dB (4.7)

Signal to noise and distortion ratio (SNDR) is the ratio of the signal power to the

total power of quantization error, noise, and harmonics. The effective number of bits

(ENOB) of an ADC is defined by Equation 4.8.

SNDR - 1.76dB (4.8)
ENOB = 486.02dB/bit

To compare different ADCs with different bit-resolution, different sampling fre-

quency, and different power consumption, a figure of merit (FOM) is defined. The



FOM normalizes the power consumption with respect to the bandwidth of the input

signal and ENOB as shown in Equation 4.9 [36][37].

FOM = Pow erConsumption(
2 fInputBandwidth * 2 ENOB

4.1.3 Noise Gain

Figure 4-3 shows a simple block diagram of a system with transfer function of H(s)

where Vin(s) is the input and Vot(s) is the output of the block. The input-output

relation is given by Equation 4.10.

Vot (s) = H(s) (4.10)
Vin(s)

v (S) v (S)

S(S) H(s) S (S)

Figure 4-3: General block diagram of a system with transfer function of H(s).

Similarly, if Sin(s) = V,in(s)12 is the noise power spectral density (PSD) at the

input and Sout(s) = |K,0 t(s)12 is the noise PSD at the output, the relation of the

input and output noise is given by Equation 4.11.

Sout(s) _ VKOut(s)| 2 - |H(s)|2  (4.11)
Sin(s) IKV,in(s)|12

If the transfer function from an internal node to the output is known, this equation

can be used to calculate the noise at the output due to the noise at the internal node.

Signal gain is the value of the transfer function for the in-band signal. If Equation

4.11 is used to refer the output noise to the input of the system, the signal gain should

be used so that the signal-to-noise ratio can be correctly calculated at the input.



4.1.4 Noise Bandwidth (NBW)

If a system has low-pass characteristics, noise bandwidth can be defined as follows:

NBW= JH(f)}|2df (4.12)
|H(0)|12 0

where H(f)=H(s) for s=j27rf.

The noise bandwidth can be used to calculate the output noise of a low-pass circuit

when a white noise is applied (by multiplying Sinm(0) with the noise bandwidth). For

a first-order low-pass filter, noise bandwidth is given by Equation 4.13 [15],[26].

7r
NBW = f3dB (4.13)

2

Equation 4.12 can be evaluated numerically with Mathematica (as shown in Ap-

pendix B). Table 4.1 summarizes the NBW for low-pass filters of different orders if

all poles are located at the same frequency. The noise bandwidth in Table 4.1 can be

used to estimate the noise of the chip when it is configured as a filter.

Table 4.1: Noise bandwidth of low-pass filters when all poles are located at the same
frequency.

Order of the filter Noise Bandwidth
First order 1.57fpole
Second order 0. 7 8 fpole
Third order 0.58fpoie
Fourth order 0.49fpoe
Fifth order 0.43fpoie

4.1.5 Noise of an amplifier

Thermal noise of a MOSFET can either be modeled with current noise at the output

as shown in Figure 4-4a or with a voltage noise at the gate as shown in Figure 4-4b

[26]. For a long-channel transistor in saturation, the noise spectral density is:

8
I2 = 4kTygm = -kTgm (4.14)

3



4kTy _ 8 kT (4.15)
n 9m 3 gm

where -y is 2/3 for long-channel transistors. Equation 4.14 suggests that an increase

in gm increases the current noise at the output and Equation 4.15 suggests that

an increase in gm decreases the voltage noise at the input. In many cases, since the

amplitude of the input signal is fixed, the signal-to-noise ratio is calculated by referring

the noise to the input. In these cases, an increase in gm improves signal-to-noise ratio.

Vn
.121

a) b)

Figure 4-4: Thermal Noise of a MOSFET.

A basic differential amplifier is shown in Figure 4-5, which includes the transistor

noise. Transistors M3, M4, and M5 are biased with constant voltages and are used

as current sources. Since the output is fully differential, the noise of transistor M5

appears similarly at both V0st, and Vosn, and cancels out if the output is differential.

The input referred noise density of the amplifier is given by Equation 4.16, assuming

perfect matching between transistor M1 and M2, and between transistor M3 and M4.

V 2 (f) = 4kTy(2 + 2gm3  (4.16)
9ml gm1

This is white noise and if the bandwidth is not limited, the mean-square noise is

infinite. In practice, the capacitive load at the output limits the bandwidth.

4.1.6 Noise Aliasing

The block diagram of a sampling system is shown in Figure 4-6, where x(t) is the

input signal which is sampled by p(t), a train of impulses. The time-domain and
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Figure 4-5: Basic differential amplifier and its sources of noise.

frequency domain representation of p(t) are shown in Figure 4-7 and Figure 4-8 [38].

p(t)

x(t) x (t)

Figure 4-6: The block diagram of signal sampling.

If the input signal bandwidth is larger than half the sampling frequency, the high-

frequency components of the signal are aliased to the lower frequencies [39] [40] as

shown in Figure 4-9. In particular, since many sources of noise have a wide bandwidth,

their high-frequency noise may alias into lower frequencies due to sampling. This is

referred to as noise aliasing or noise folding. The total mean-square noise does not

change due to sampling, however the power spectral density (PSD) changes. If white
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Figure 4-7: Time domain representation of the sampling signal.
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Figure 4-8: Frequency domain representation of the sampling signal.

noise is not filtered, it has infinite power. In continuous-time circuits, white noise

may be filtered by subsequent circuits. However, if white noise is sampled before

being filtered, its PSD is infinite. As a result, any filtering in the subsequent stages

does not lower the noise which is aliased into the signal band.

4.2 Noise of the ADC

This section estimates the noise of the ADC for the designed chip. The dominant

sources of noise in an ADC are the sampling noise and the noise of the zero-crossing

detector. The input signal of the chip is differential and each differential input has

a peak-to-peak value of 0.5V. As a result, the mean-square input signal is given by

Equation 4.17.

A 2 1V2_ - v2 (4.17)
sin 8 8
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Figure 4-9: Frequency domain presentation of the sampling signal.

where A is the peak-to-peak amplitude of the sinusoidal input. The mean-square

quantization error is calculated in Equation 4.18 for a 10-bit ADC.

(4.18)- (A/2N)2 - 79rV 2

q 12

The size of sampling capacitors is 180fF on each differential input. Since the sam-

pling capacitors of the differential inputs are in series, the total sampling capacitance

is 90fF. Equation 4.19 shows the total sampling noise.

Ssamping =
kT = 46nV 2

C
(4.19)

Since the pre-amplifier in the implemented zero-crossing detector has a gain of

10, the noise of the threshold detector is attenuated by a factor of 102 (according

I



to Equation 4.11) and can be ignored compared to the noise of pre-amplifier. The

input-referred noise of the pre-amplifier can be calculated similar to Equation 4.16 or

obtained from simulation. The noise as found through simulation is:

Spre-amplifier = 120nV 2  (4.20)

The noise gain from the input of the pre-amplifier to the output is 3 and the gain

of the input signal to the output is 4 (Appendix D). As a result, the noise of the

pre-amplifier is multiplied by (3)2 if it is referred to the input. The input-referred

noise of one stage consists of the noise of all components when referred to the input.

Since the sources of noise are uncorrelated, the total mean-square noise is the sum of

individual mean-square noise referred to the input [15] as shown by Equation 4.21.

Sone-stage =46nV2 + 120nV 2 * 2 114nV 2  (4.21)
4

The total noise of the ADC can be calculated by referring the noise contribution

of all stages to the input of the ADC and adding them up. Since the noise of different

blocks are uncorrelated, their mean-square values are added. Since the gain of each

stage is 4, the mean-square noise is scaled by a factor of - when it is referred from

the output of each stage to its input. The total noise of an ADC is calculated in

Equation 4.22.

SADC = (1+ +(-)2 1 )3+ )4) *114nV2 = 1.33*114nV 2 = 152nV 2 (4.22)
42 42 42 42

The mean-square noise can be added to the quantization error to calculate the

ENOB of the ADC only due to its thermal noise and quantization error (ignoring

harmonic distortion).

SADC = 79nV 2 + 1.33 * 114nV 2 = 227nV 2  (4.23)

According to Equation 4.8, this corresponds to an ENOB of 9.24bits (with the



harmonic distortion being ignored). This can be compared with the measurement

results when the input is grounded. With grounded inputs, no harmonic distortion

is present and the measured mean-square noise is only due to noise and quantization

error. In Chapter 6, it is shown that the noise of the system with grounded inputs

corresponds to an ENOB of 9.26bits.

Note that in an ADC configuration, the sampling noise and the noise of the pre-

amplifier are aliased back to lower frequencies due to sampling. Noise aliasing does

not change the total noise, but changes the power spectral density of the noise. Since

the subsequent stages do not filter the noise, only the total mean-square noise is

important. As a result, noise aliasing can be ignored when calculating the total

noise.

4.3 Filter Noise

In this section, the noise of a filter is estimated. First, the noise model of an integrator

is provided. Then, the sampling noise and the noise of the amplifier are aliased into

the low frequencies due to sampling. The filter transfer function is used to filter

different noise components. The total noise is calculated by adding the contribution

of different components.

4.3.1 Noise of an Integrator

Figure 4-10 shows the schematic of a switched-capacitor integrator. Although an

opamp model is used for simplicity, all the following equations apply to ZCBCs as

well. The noise of an opamp (or zero-crossing detector) is represented by V. The

dominant component of V is the noise of the differential pair at the first stage of

an opamp (or the first stage of zero-crossing detector). This noise is estimated by

Equation 4.20 for the implemented zero-crossing detector. The relation of input and

output voltages is shown in Equation 4.24.



Cl
Vout[n + 1] Vtj[n] + Vin[n] (4.24)

C2

V can be added to the equation as following:

Vo-t[n + 1] = Ost[n + 1] + V (4.25)

where Qout[n + 1] is given by:

QOst[n + 1) Qort[n] + C1(Vin[n] + V) (4.26)

QOst is the charge on capacitor C2. Vn appears both in Equation 4.25 and Equation

4.26. In Equation 4.25, V is added to the output voltage, but it is not integrated on

the feedback capacitor. However, in Equation 4.26, V, is also integrated across the

capacitor.

C2

1 C1 2
Vin -- 2 Vout

2 1 CL
- n

Figure 4-10: Schematic of a switched-capacitor integrator.

The noise directly adds both to the input voltage and to the output voltage. In

other words, the noise can be modeled with two components, one which is at the input

and one at the output as shown in Figure 4-11. Note that the two noise components

are correlated. Therefore, their noise voltage should be added (as opposed to adding

the mean-square noise). However, they experience different transfer functions to

the output. It is shown that only one of them is dominant for each stage. As a

result, adding the mean-square noise instead of noise voltages causes only a small



error. In the rest of the analysis, the two sources of noise are treated as uncorrelated

acknowledging that the total noise is underestimated. The sampling noise can also

be added to the input noise. As a results, V.,i. and V, 0st are shown by Equation 4.27

and Equation 4.28.

V2 = kT/C + Spre-ampif ier =(46 + 120)nV 2 = 166nV 2  (4.27)

Vout = Spre-amplifier = 120nV 2  (4.28)

Vo Vna ct

V - Vt
ou

Figure 4-11: Noise model of the integrator.

The 3dB frequency of the sampling circuit is at 60 MHz. With a sampling rate of

50 MSPS, high-frequency noise is aliased to the low frequencies. It can be assumed

that the total noise is uniform over the sampling bandwidth (0-25 MHz). Similarly,

the noise of the opamp (or zero-crossing detector) can be assumed to be uniform over

the sampling bandwidth (0-25 MHz).

4.3.2 Noise Transfer Function

The block diagram of a third-order low-pass ladder filter is shown in Figure 4-12. As

shown earlier, the noise of an integrator can be modeled with two sources of noise,

one at the input and one at the output. Figure 4-13 shows the block diagram of the

same filter when the sources of noise are added to each block.

The values of C1 = 159nF, L2 = 318nH, and C3 = 159nF are chosen that

correspond to a third-order Butterworth filter with a cut-off frequency of 1 MHz.

For each source of noise, the noise transfer function can be calculated (as shown in
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Figure 4-12: Block diagram of a third order low-pass filter.

13

V2

11/sC1 1 /sL2 1/sC3 **u

Van Vn12 Vn2l Voz V22 V~n32

Figure 4-13: Block diagram of a third order low-pass filter with sources of noise.

Appendix C). For example, the transfer function from Vn11 to the output is:

Hn1s)=vout _ 1 2S

HnvnnS) n (C1 + C3+ L2)* S + (Cl L2 +C3 * L2)* S2 -+C1*C3*L2*S +2
(4.29)

Figure 4-14 shows the transfer function between the input-noise of the integrators

(Vanl, V 21, and V 31) and the output. It is important to note that the three transfer

functions are low-pass filters at 1 MHz. In addition, both the input signal and the

noise are attenuated by a factor of two in low frequencies. This can be explained

easily based on the passive implementation of the ladder filter where the terminating

resistors at the input and the output determine the low-frequency gain. The mean-

square noise of Vn231 is 166nV 2 . After sampling at 50 MSPS, the noise is aliased

into the sampling bandwidth (0-25 MHz). The power-spectral-density of V 31 in the



sampling bandwidth is:

166niV 2

Sn3 1 (f) = 25M (4.30)
25MH z

Since the noise is filtered at 1 MHz with a first order filter and attenuated by a factor

of two, the output referred noise of Vn3 is:

166nV2 1
Snai,output = * 1.57MHz * - (4.31)

25MHz 22

and the input referred noise of Vn3 is:

166nV 2

Sn3l,output = 25MH * 1.57MHz (4.32)

The input-referred noise contribution of Van1 , V 21 , and Vn3i can be estimated as:

Snl,input =5M z * (1.57MHz + 0.78MHz + 0.58MHz) = 19.5nV2  (4.33)25MH z

The noise could be overestimated by assuming that all sources of noise are filtered

by a first-order low-pass filter. For a more accurate estimation, the results of Table

4.1 are used. However, the total noise contribution of these sources is not significant.

Figure 4-15 shows the transfer functions between the output-noise of the integra-

tors (Vn12, V 22, and V 32) and the output of the filter. V 12 and V 22 are band-pass

filtered at 1 MHz. The output-noise of the integrator in the last stage, V 32 , is high-

pass filtered. The noise contribution of V 21 and V 22 is negligible since they are

band-pass filtered and their noise is even less than Van1 , V 12 , and V 31 . The noise of

Vn3 2 is not filtered from 1 MHz to 25 MHz (which is 96% of the frequency range after

aliasing) and is partially filtered from 0-1 MHz. Since the output mean-square noise

contains more than 96% of the noise, it is approximated that the noise is not filtered

at all.



Sn32-output =120nV2

The main noise contributor in the ladder low-pass filter is the zero-crossing de-

tector noise in the last stage. The noise can be referred to the input of the filter as

shown in Equation 4.35.

Sn32 -input =120nV2 * 22 = 480nV 2 (4.35)

Transfer Function
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Figure 4-14: Noise transfer function of integrators input noise in a third order But-
terworth filter.

(4.34)
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of integrator output noise in a third order But-

4.4 Coupling Noise

A signal coupling to other signals, reference voltages, and supply voltages is referred

to as coupling noise because of its similarities to noise when it is viewed in the time

domain. However, it is correlated with the activity of the blocks that generate it. It

is also not feasible to predict the exact shape of the signal, which is another reason

to treat it as a random noise. In this section, the coupling noise on some important

voltages are reviewed.
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4.4.1 Noise on Reference Voltages

Ripples on the reference voltage(s) can reduce the signal to noise ratio. In an ADC,

the reference voltage is connected to the capacitor that holds the input signal. Any

noise or ripple on the reference voltage in the first stage of a pipeline ADC is directly

added to the noise or ripple on the sampled signal. Therefore, even if the ADC is

designed with reasonably low noise and distortion, a poor reference voltage lowers

its SNDR significantly. In a pipeline ADC, only the first block is very sensitive to

the noise on the reference voltage, but in a filter, the noise couples directly to the

input signal in all stages. Depending on where the noise is injected, it is filtered

with the corresponding transfer function to the output. Therefore, low-frequency and

high-frequency ripples have different effects on the filter performance.

While reference voltages provide a constant voltage, their current flowing through

them contains high-frequency components. The high-frequency components is due to

the activity of all stages. In this chip, the reference voltage is provided externally.

When high-frequency current passes through the bond-wire inductance, a voltage drop

appears across the bond-wire. An on-chip decoupling capacitor is used to reduce the

voltage ripples.

Figure 4-16 shows the simulated noise on reference voltages if the bond wire has a

resistance of 20Q, inductance of 2nH, and is decoupled on-chip with a 4nF capacitor.

The reference voltage is provided differentially. The top signal in Figure 4-16 is the

differential signal and the next two signals are the negative and the positive sides of

the differential signal. The differential signal has a transient response at the beginning

where it drops from 1V to 991mV. This portion of the response can be ignored since

it happens during the power up. Each side of the differential signal has peaks on the

order of 70mV, which is large compared to 1LSB of the ADC (1LSB is on the order of

1mV). However, the differential reference voltage has a peak-to-peak ripple of 253uV.

The noise on the power supply also couples to the output and may decrease the

signal-to-noise ratio of the system. Simulation shows that the zero-crossing detector

has 40dB supply noise rejection. The supply noise is analyzed in detail in [24]. The



Figure 4-16: Noise of reference voltage based on simulation.

supply noise is attenuated by an on-chip decoupling capacitor. A more appropriate

method is to use an on-chip voltage regulator (as opposed to an off-chip regulator).

Common-mode voltage may also experience high-frequency current that creates

high-frequency ripples on it as shown in Figure 4-17. The ripple on the common mode

voltage tends to be much smaller because in differential circuits, since the positive

and negative sides of the circuit (I, and I) inject opposite currents to the common-

mode voltage that cancel out if the circuit is perfectly matched. In addition, the

common-mode rejection of the zero-crossing detector also attenuates the effects of

common-mode ripples at the output.

... .......
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Figure 4-17: The currents that passes through Vem in a fully differential circuit.

4.5 Conclusion

In this chapter, the noise of an ADC and a filter were estimated. In an ADC con-

figuration, the noise is mainly due to the first stage. The noise contribution of the

sampling circuit and the zero-crossing detector is estimated. The total noise is dom-

inated by the noise of the zero-crossing detector. In a filter configuration, the noise

is a function of the filter order and is shaped by the filter. The sampling noise of

each stage is filtered by the filter transfer function and its effect is very small on the

total noise of the system. It was shown that the noise of the zero-crossing detector in

the last stage is the dominant source of the noise since it is not filtered and directly

adds to the output. In an ADC configuration, the gain of the first stage attenuate

the noise of the next stages when it is referred to the input. In a filter configuration,

the in-band signal is not amplified when it goes to the next stage. As a result, each

stage contributes similarly to the total noise (except that its noise is being filtered).
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Chapter 5

Sensitivity of the System

In this chapter, the sensitivity of the system is analyzed to the mismatch of capacitors,

and the offset of zero-crossing detector when configured as an ADC or as a filter.

5.1 Sensitivy to Capacitance Values

Manufacturing tolerances causes mismatch in capacitor ratios. This section reviews

how the mismatch affects the ADC and filter functionality.

5.1.1 ADC Configuration

In an ADC configuration, the residue is amplified before being sent to the next stage.

The gain of the amplifier is given by 1 + Q. The mismatch between the feedback

capacitor and the sampling capacitor changes the gain of the amplifier from the desired

value. Figure 5-1 shows the residue plot of one stage of a pipelined ADC with no

gain error. A gain error changes the residue to that of Figure 5-2. Figure 5-3 and

Figure 5-4 show the ADC transfer function when the gain of the first stage is larger

or smaller than the ideal gain (respectively). As shown, a larger gain causes a wide

code and a smaller gain causes missing codes.

Capacitor mismatch also affects the BDCs since its sampling capacitors may have

mismatch. The threshold voltage is adjusted with the assumption that the sampling



capacitors have the same value. Capacitor mismatch changes the effective threshold

voltage of BDCs. For small changes in threshold voltage of BDCs, the over-range

protection avoids the subsequent stage to be saturated. However, a large deviation

in threshold voltage of BDCs saturates the subsequent stages.
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Vout
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Figure 5-1: Residue plot of a stage with no gain error.

5.1.2 Filter Configuration

In a filter configuration, the mismatch between the feedback capacitor and the sam-

pling capacitor changes the integration coefficient. Since the integration capacitors

are large, the capacitor mismatch is smaller in the filter configuration. However, since

the feedback capacitors are reconfigurable, the desired capacitor may not be avail-

able. In such cases, the closest capacitor value is used and the integration capacitor

experiences up to 10% error. Figure 5-5 shows the filter characteristics for an ideal

Vout
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Figure 5-2: Residue plot of a stage with gain error.

third-order Butterworth filter with cutoff frequency of 1MHz. It also shows the char-

acteristic of the same filter if the integration coefficient of only one stage experiences

20% mismatch (20% mismatch is used so that the effect of the mismatch is better

observed). In Figure 5-5, Capi, Cap2, and Cap3 are the integration capacitor of the

first stage, the second stage, and the third stage respectively. It is shown that the

integrator gain error changes the cutoff frequency and the overall shape of the filter.

However, the filter characteristic does not deviate significantly from the ideal one.

In the first stage and the last stage of a filter, the capacitance mismatch may

also affect the value of the terminating resistors. Figure 5-5 shows the effects of

the mismatch of the capacitors used as a terminating resistors on the overall filter

characteristic (20% mismatch is used only to signify the effects of the mismatch). In

this design, since the terminating resistors do not have a reconfigurable value, the

mismatch is only limited to the mismatch of the capacitors.
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Figure 5-3: ADC transfer function when the gain of each stage is larger than the ideal
gain.

5.2 Offset of the Zero-Crossing Detector

In new technology nodes, Vth variation increases as the supply voltage decreases.

Random dopant fluctuation (RDF) increases Vth variation in new technology nodes

[42]. The offset of zero-crossing detector is mainly due to variation in transistor

threshold voltage (Vth), transistor width, and transistor length. In this section, the

effect of the offset of zero-crossing detector on the system functionality is reviewed

both in an ADC configuration and in a filter configuration.

5.3 Offset in an ADC Configuration

Simulation shows that the offset of the zero-crossing detector is in the range of 1mV

to 15mV. As a result, it does not cause the output voltage to saturate (since the
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Figure 5-4: ADC transfer function when the gain of each stage is smaller than the
ideal gain.

over-range protection allows the output to have the corresponding offset). The offset

of each stage appears as the offset of the ADC. For most applications, this is not an

important factor.

If the offset of the zero-crossing detector is larger than 15mV, it saturates the

output. The output saturation increases the non-linearity of the system. In this

system, the offset of zero-crossing detector can be adjusted by programming the

active load of the preamplifier to reduce offset.

5.4 Offset in a filter Configuration

In a filter configuration, all stages are configured as integrators. At a first glance, an

offset at the input of an integrator may seem troublesome since a small DC input may
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Figure 5-5: Transfer function of a third order butterworth filter with 20% mismatch
on only one integrating capacitor.

saturate any integrator. However, there are local feedbacks that change the effects of

the integrator for an offset. Figure 5-7 and Figure 5-8 show the passive and active

implementation of a low-pass ladder filter. Figure 5-9 shows the block diagram of the

active filter with the corresponding input referred offset of the integrators.

From the passive implementation, it can be expected that if a DC input is applied

to the filter, each state variable (the voltage across a capacitor and the current through

an inductor) has a constant DC value. The DC value of each stage can be calculated

from the block diagram. Since in steady state, the DC voltages stay constant, the

input of the integrators should have zero value. As a result, the sum of all input

voltages of the integrator should be zero. If there is no offset, the following equations
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Figure 5-6: Transfer function of a third order butterworth filter with 20% mismatch
on terminating resistors.

show the steady-state value of the system for a DC input.

First Integrator : Vi = V1 + V2

Second Integrator: V1 = V3

Third Integrator: V2 = V4

Fourth Integrator: V3 =Vut

Fifth Integrator: V4 =Vut

(5.1)

(5.2)

(5.3)

(5.4)

(5.5)

Solving the system of the equations, it can be shown:

V1 = V2 = V3 = V4 = = " n (5.6)
2

-

-F

-5

10

-15E

o -20C-

o -9r

-30-
-35 -..

-4C

(5.6)
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Figure 5-7: Passive implementation of a low-pass ladder filter.

V2 V4

Figure 5-8: Active implementation of a low-pass ladder filter.

The offset can be included in the equations as well. For example, to find the

effects of the offset of the third integrator on different voltages, Equation 5.3 can be

rewritten as:

Third Integrator : V2 + Vff 3 = V4 (5.7)

Solving the system of the equations, it can be shown:

V1 = V3 = V4

Vin + Voff 3

% = 2

Vin

= t V V n - V=0 ff3
O~t = 2 (5.8)

(5.9)
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Figure 5-9: Block diagram of an active low-pass filter with the corresponding input

referred offset of each integrator.

The offset in the third stage adds an offset to the output of all stages. This is the

case for all stages. An offset in zero-crossing detector of any stage generates an offset

at the output of all stages. When the input is grounded, the reference voltages of

all stages are chosen to center the output of each stage at the middle of its dynamic

range. An offset of any stage causes the output of all stages to move. As a result,

the output dynamic range of each stage is reduced by the output offset. Similar to

the ADC configuration, the offset can be cancelled with the programmable load in

the first stage of the zero-crossing detector. However, for a small offset (less than

10mV), a simpler solution is to reduce the input range by the amount of the offset to

compensate for the offset.

5.5 Conclusion

In an ADC configuration, capacitance mismatch causes a gain error of the ADC stage,

consequently INL and DNL. In Filter configuration, capacitance mismatch does not

introduce any non-linearity. However, it changes the filter characteristics.

A small offset does not affect the functionality of an ADC, but a large offset

introduces non-linearity. In a filter reconfiguration, an offset in any stage causes the

output of all stages to experience an offset. The offset also appears at the analog



output. An offset of each stage reduces the signal range at the input.



Chapter 6

Measurements of the Fabricated

Chip

This chapter shows the measurement results of the fabricated chip and describes

the significance of each measurement. Figure 6-1 shows the die photo of the chip

fabricated in TSMC 65nm technology and Figure 6-3 shows the layout of each stage.

The block diagram of the chip is shown in Figure 6-2. The core is 340um x 900um

and consists of 8 identical stages (except for the sampling circuit of the first stage

which has minor differences). Each stage can be programmed as an amplifier or an

integrator with programmable coefficients. It can be used as a building block of a

pipeline ADC or a low-pass filter. To demonstrate the configurability, the chip is

configured as an ADC and filter for different sets of measurements (eight stages were

sufficient to show these functionalities). In all measurements, the input is sampled at

50MSPS (unless specified). The clock has a 300ps non-overlapping period and reset

pulses have 400ps pulse width. This corresponds to 1.4ns of the total clock period

(the clock period of 50MSPS is 20ns). The reference voltage is provided externally

and the power drawn from the external reference voltage is negligible.
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Figure 6-1: The die photo of the core that consists of eight stages.
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Figure 6-2: The block diagram of the fabricated chip.

6.1 ADC Measurement

In ADC configuration, stages 1 to 5 are used to implement a 10-bit ADC that operated

at up to 50MSPS as shown in Figure 6-4. Figure 6-5 and Figure 6-6 show the dynamic

performance of the ADC at 50 MSPS with a 1MHz and 24.7MHz sinusoidal input.

The ENOB is measured to be 8.02bits. The performance of an ADC depends on its

noise and its nonlinearities. An increase in the number of sampling points lowers

the visual noise floor. This is because the total noise power does not depend on the

number of sampling points. When the number of points increases, the noise in each

frequency bin decreases. A lowered noise floor make it possible to distinguish between

noise and harmonics (since only noise floor scales with number of sampling points
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Figure 6-3: Layout of one stage.

and the amplitude of harmonics does not scale). The measurements show that the

second and third harmonics are larger than others (Figure 6-5). The second harmonic

was expected to be small because of differential implementation of the circuit. The

second harmonic is mainly due to the mismatch between the positive and negative

ramps which cause the common-mode voltage to vary with signal. Figure 6-5 also

shows that high-order harmonics also have significant amplitudes. This corresponds

to nonlinearities in one of the last stages. For example, if the offset of bit-decision

comparators is larger than the over-range protection in stage four or five, high-order

harmonics are introduced.

Integral nonlinearity (INL) of the ADC is measured by applying a low-frequency

sinusoidal input, and performing a statistical analysis of the output codes as proposed

in [33]. Figure 6-7 shows the INL of the 10-bit ADC which is +1.7/-1.8 bits. The

pattern of the INL may hint the type and location of the nonlinearity [35]. For

example, a sharp spike may indicate saturation of a block. In addition, the repetition

of a pattern may indicate which stage is contributing to the nonlinearity. INL is most

useful in diagnosis if there is only one or two dominant source(s) of nonlinearity since

their effect may be identified more easily.



10-bit ADC

Figure 6-4: The chip configuration for test as an ADC.

Figure 6-8 shows the frequency response of the system when the differential input

is grounded. Since no input signal is applied, the output contains no harmonics. This

measurement is suitable to measure the internal noise of the system. The zero-input

coincides with the threshold level of one of the bit-decision-comparators in the first

stage. As a result, the noise of the bit-decision-comparator shows up in its decision in

this measurement. Subsequent stages can recover the original analog signal because

of the over-range protection. In ZCBCs, the outputs are reset at the beginning of

each clock cycle. Therefore, when a zero input is applied, the internal nodes still have

high activities. As a results, the coupling noise to the power supply and the reference

voltages are still affected by the internal activities.

If a full signal tone (with no harmonics) is assumed to be present in the signal

spectrum of Figure 6-8, an SNDR of 57.4873dB is obtained (which corresponds to an

ENOB of 9.26 bits if the system has no harmonics). This measurement shows the

noise of the system (including both random noise such as thermal noise and coupling

noise).

Figure 6-9 shows the ENOB as the clock frequency changes. The measurement

uses 100MSPS biasing at different sampling frequencies which means the ramp rate

is the same in all cases and is fast enough to reach virtual ground condition for

a clock as fast as 100MSPS. In opamp-based circuits, lowering the clock frequency

provides more time for each stage to settle down more accurately to the final voltage.

However, in ZCBCs, lowering the clock rate does not increase the accuracy of each
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Figure 6-5: FFT plot of the ADC output with a 1MHz sinusoidal input.

stage if the ramp rate is kept the same. Figure 6-9 shows an ENOB of 8.4bits for low

sampling frequencies (20MHz and 30MHz) which degrades as the sampling frequency

increases, contradicting the expectation that the accuracy does not change since the

ramp rate is kept the same in all measurements. One possibility is that the accuracy

of each stage of the ADC does not change when the clock frequency changes, but

the accuracy of the reference voltages does change. At lower clock frequency, each

disturbance on the reference voltage has sufficient time to settle by the next clock.

As the clock frequency increases, there is less time for the reference voltages to settle.

The accuracy of the output signal directly depends on the accuracy of the reference

voltages.

The ADC consumes 1.92mW at 50MSPS with an ENOB of 8.02bits and an FOM of

150fJ/conversion-step. The power consumption of digital blocks scales with frequency

as shown by Equation 6.1.

PDigia 2 .D-fClk (6-1)
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Figure 6-6: FFT plot of the ADC output at a near Nyquist rate.

The power consumption of bit-decision-comparators, control blocks, and switches

fall in this category.

If analog circuits are biased with constant currents, their power consumption is

constant regardless of the sampling frequency. In ZCBCs, power is consumed in two

main circuits, one to drive the output ramps, and the other to bias the differential

input of zero-crossing detector. The output ramp stops when the circuit reaches the

virtual ground condition. As a result, the power consumption at the output is given

by Equation 6.2 which scales with the sampling frequency.

Poutput Ramp-up o CLoad- Voutput Swing Vdd. fcik (6.2)

The zero-crossing detector turns on at the beginning of the amplification phase and

turns off when the circuit reaches virtual ground condition. The power consumption

of zero-crossing detector depends on its bias current and how long it stays on. If Ton

denotes the average time that the comparator is on during one clock cycle, Equation

6.3 shows the power consumption of the ZCBC comparator.
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Figure 6-7: The INL of the ADC with 10-bit quantization levels.

PZCBC Comp OC IBias-VDD-TOn-fClk (6-3)

Since all different components of the power consumption scale linearly with the

sampling frequency, the total power is expected to scale linearly with the sampling

frequency as well. Figure 6-10 shows the measured power consumption as a function

of the sampling frequency which scales linearly as expected. The FOM degrades,

however, due to currents in the bias network, which do not scale with frequency. In

opamp-based circuits, the power consumption can be scaled by changing the biasing

current of the opamp. For example, [48] changes the opamp bias to optimize the power

consumption of its ADCs while its sampling frequency changes. When the frequency

changes by a factor of 100, its bias current (and hence its power consumption) changes

by almost a factor of 400.

Changing the ramp rate changes the accuracy of ZCBC circuit. With the same

comparator delay, slower ramp rate results in both smaller overshoot thus smaller

overshoot variation. Figure 6-11 shows the ENOB of the ADC as the ramp rate
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Figure 6-8: The FFT plot of the ADC output with grounded inputs.

changes where ramp rate of 1 corresponds to the ADC setting to operate at 100MSPS.

Similarly, ramp rate of 0.7 corresponds to ramp rate suitable for 70MSPS and ramp

rate of 1.2 corresponds to ramp rate suitable for 120MSPS. Figure 6-11 shows that

slowing down the ramp rate does not improve ENOB. This indicates that the ac-

curacy of the ADC is not limited by the accuracy of the zero-crossing detector or

ramp linearity, because a lower ramp rate reduces the effects of non-idealities of zero-

crossing detector and current sourced. For example, a lower ramp rate reduces the

effects of the delay of zero-crossing detector and its delay variation. A lower ramp

rate also means the output current is smaller; as a result, the output current variation

is smaller too. In addition, increasing the ramp rate does not reduce the ENOB which

implies the comparator is fast enough even with a faster ramp rates. As the ramp rate

reduces to 0.6, ENOB reduces dramatically. This corresponds to the situation that

the ramp does not have enough time to reach to the final value (or equivalently, the

ZCBC circuit does not reach virtual ground condition). This threshold was expected

to be at 0.5 since the chip is operating at 5OMSPS. The difference is due to additional
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Figure 6-9: The ADC ENOB at different sampling rates.

parasitic capacitance at the output node.

The performance of an ADC may degrade as the frequency of the input signal

approaches the Nyquist rate. The sampling circuit is designed to have a -3dB band-

width of 60MHz. Figure 6-12 shows the measured ENOB of the ADC as a function

of the frequency of the input signal. Note that since the output of each ZCBC stage

is a ramp, it is not sensitive to the bandwidth of the input signal. The only stage

which is sensitive to the bandwidth of the input signal is the sampling circuit of

the first stage. Figure 6-12 shows that the ADC performs equally well at different

input frequencies. For sampling rate of 50MSPS, the Nyquist rate is 25MHz. The

ENOB does not degrade for the input frequency as high as 56MHz (where the ADC

is sub-sampling).

Some wireless applications such as the receiver in wireless base transceiver stations

require an ADC with high linearity [43],[44]. In these systems SFDR is a more

important metric than SNDR or ENOB. Figure 6-13 shows the SFDR of the ADC at

different input frequencies.
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Figure 6-10: The power consumption and the FOM of the ADC as a function of the

sampling frequency.

ENOB is maximum when the full input signal range is utilized. If the input signal

is larger than the full range, the output saturates, which results large harmonic tones

in the frequency response and reduces ENOB as shown in Figure 6-14. Applying a

smaller input than the full range results in a lower signal to noise ratio and a lower

ENOB. Figure 6-14 shows the measured ENOB of the ADC as a function of the

input signal amplitude which reduces one bit for every 6dB reduction in the input

amplitude.

Figure 6-15 compares the figure of merit (FOM) of the ADC with the state of

the art non-reconfigurable pipeline ADCs that are recently published at ISSCC. As

shown, the figure of merit of this chip is very competitive.

6.2 Filter Measurement

Filter functionality is verified with two different configurations. The first configuration

is shown in Figure 6-16 where the first two stages of the chip are programmed as a
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Figure 6-11: The ADC ENOB at different ramp rates.

second order Butterworth low-pass filter, the third stage as an amplifier, and the

last five stages as a 10-bit ADC. Figure 6-17 shows both the measured and the ideal

frequency response of the filter. This test is a very significant test since three different

functionality of the stages are tested simultaneously and it is shown that the stages

interact properly when configured for different functionalities.

The second configuration to test the filter functionality is shown in Figure 6-18

where the first three stages of the chip are programmed as a third order Butterworth

filter with a cutoff frequency of 1MHz for the sampling rate of 50MSPS. Figure 6-19

shows both the measured and the ideal frequency response of the filter.

When the chip is configured as in Figure 6-18, the frequency components of the

output is shown in Figure 6-20. Large harmonics are observed that are mainly due

to non-linearity of the ADC. The bit-decision-comparators of the chip show large

offset variation. Since the first three stages are more accessible to the input signal,

the offset of bit-decision-comparators can be measured and adjusted by programming

the capacitive load of bit-decision-comparators. However, the offset of bit-decision-
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Figure 6-12: The ENOB as a function of the input signal frequency.

comparators in other stages is not adjusted.

6.3 Cost of Reconfigurability

Reconfigurability in the system is provided by additional programmable capacitors,

switches, analog buffers, bootstrapping circuits, and an additional set of sampling

capacitors. The additional components increase the total area of the chip and increase

the length of wires that connect different stages. In addition, many signals need to

connect more blocks as needed by the reconfigurability. This increases the parasitic

capacitance of these signals and the coupling between different signals. The cost of

reconfigurability is evaluated based on its effects on power consumption, speed, area,

noise, and architectural limitation.
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Figure 6-13: The SFDR as a function of the input signal frequency.

6.3.1 Power Consumption

Power consumption is affected by reconfigurability in several forms. In an ADC

configuration, the additional components increase the length of wires, which increases

the capacitive load of each stage by 38fF. Compared with total capacitive load of 225fF

at the output of each stage, the output load increases by 17%. Since 21% of the power

consumption in each stage is to drive the output load, the power consumption of each

stage increases by 4% due to additional parasitic capacitance. Stage scaling can

reduce power consumption. The input noise of the second stage is attenuated by a

factor of 42 when referred to the input of the first stage since the gain of the first

stage is 4. If we assume that the power consumption of each stage is 1 unit, the

power consumption of 5 stages that are not scaled is 5 units. If only the second

and third stages are scaled, and they are scaled only by a factor of two, the overall

power consumption is 1+0.5+0.25+0.25+0.25=2.25 units. Without scaling, the noise
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Figure 6-14: The ENOB as a function of the input signal amplitude.

is given by:

SADC = (I+I + 2 13 4 * Sstage = 1.33 * Sstage (6.4)

With scaling, the noise can be calculated as:

SADC 2 3 4 *4)*Sstage = 1-82 * Sstage (6.5)

Therefore, the overall power consumption is reduced by a factor of 5 = 2.22 while

the noise increases by 36%. In the reconfigurable system, it is not preferred to scale

stages since it improves the power consumption in ADC configuration while exacer-

bates the total noise in filter configuration.

In a filter configuration, the additional power consumption for reconfigurability

is mainly because of the parasitic capacitor of bootstrapping circuits that drive pro-

grammable switches. A non-reconfigurable filter does not require these components,

and they can all be replaced with wires for a hardwired connection. The parasitic
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capacitance increases the load of each stage by 146fF. Compared with 360fF out-

put load in filter configuration, the output load increases by 28%. Since the power

consumption for driving the output capacitance is 21% of the power consumption of

each stage, the power consumption of each stage increases by 6% due to additional

parasitic capacitance. Stages can be scaled for power optimization. For example,

since the last stage contributes the most to the noise, it can be scaled up, and other

stages can scale down. In the reconfigurable system, however, the order of the filter

(and therefore the last stage) is not known a priori. As a result, the stages scaling in

a reconfigurable system is not practical even if only a filter functionality is desired.

6.3.2 Speed

Reconfigurability has minor effect on the maximum speed of the system. It increases

the parasitic capacitance of different nodes. For analog signals, this is compensated

by increasing the bias current of the circuit that drives those node. In ZCBC circuit,
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Figure 6-16: The chip configuration for test as a second order filter.

this corresponds to the increase of the output current sources the effect of which

has been accounted for in the previous section (i.e. increase in power consumption).

For digital circuits, the additional parasitic capacitors are driven by stronger buffers.

This corresponds to one or two more additional buffers at the output of some digital

signals. The additional delay of the buffers are negligible compared to a clock cycle.

Therefore, the cost of reconfigurability on speed is negligible.

6.3.3 Area

The size of each stage is 340um x 114um. In an ADC configuration, the size of the

required circuit blocks is 150um x 76um. As a result, the size of each stage is 3.4

times larger due to reconfigurability. In a filter configuration, the size of the required

blocks is 266um x 91um. As a result, the size of each stage is 1.6 times larger due to

reconfigurability assuming that all the reconfigurable capacitors are used.

If one core was designed only to implement an ADC and another core was designed

only to implement a reconfigurable filter, the required area would be 90% of the

current configuration. In other words, combining the two functionality in one core

has 10% area penalty.
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Figure 6-17: Ideal and measured filter transfer function for a second order butterworth
filter.

6.3.4 Noise

In an ADC configuration, the reconfigurability increases the noise for several reasons.

One reason is that in non-reconfigurable ADCs, the noise can be optimized by scaling

the stages. For example, if the first stage is scaled up by a factor of 2 and stages 4 and

5 are scaled down by a factor of 2, the total power consumption remains the same,

but the total mean-square noise is reduced almost by a factor of 2. Another reason

that the noise increases in ADC configuration is the additional parasitic capacitance

on the virtual ground node. Because of the reconfigurability, the virtual ground node

is connected to many circuit blocks. As a result, an additional parasitic capacitance

of 25fF is present on the node. The output referred noise of the zero-crossing detector

is given by Equation 6.6 (Appendix D).

= 180 fF + 25fF F

Sn6ftput = F + 2 * 120nV 2 = 1400nV 2  (6.6)
60ef F

The input referred noise of zero-crossing detector is given by Equation 6.7.
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Figure 6-18: The chip configuration for test as a third order filter.

SnnpYt ( )2 * 1400nV 2 = 87nV 2  (6.7)

The noise is 67nV 2 in the absence of the additional parasitic capacitance. The

input referred noise of the zero-crossing detector increases by 29%. Considering sam-

pling noise (kT/C) of 46nV 2 in both cases, the total input referred mean-square noise

of each stage increases by 18%.

In a filter reconfiguration, stages could scale to reduce the noise for the same

power consumption. For example, in a third-order Butterworth filter, scaling up the

last stage by a factor of 2 and reducing the size of the first two stages by a factor of

2 reduces the overall mean-square noise by almost a factor of 2.

During the noise analysis of an integrator, it was shown that the noise of a zero-

crossing detector appears both at the input and at the output of the integrator. The

noise at the output of the integrator does not depend on the value of any capacitor

and is the dominant source of the noise in low-pass filters. As a result, the increase

in the parasitic capacitance of the virtual-ground does not affect the overall noise of

a low-pass filter.

6.3.5 Choice of Architecture

Reconfigurability limits the choice of the architecture significantly. The ADC or filter

should have an architecture in which most components can be reused in different
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Figure 6-19: Ideal and measured filter transfer function for a third order butterworth
filter.

configurations. For example, pipelining two successive-approximation-register (SAR)

ADCs is proposed to improve the resolution and performance of an ADC [45] [46].

Since large SAR ADCs are not reusable for other functionalities, this method is not

suitable for reconfigurable system. In general, it is difficult to quantify the effects of

architectural limitation on the performance of the system. Table 6.1 summarizes the

cost of reconfigurability.

6.4 Measurement Summary

The chip is tested as an ADC and two types of filters. In one test, one stage is also used

as a gain stage. It is shown that the chip works properly in all configurations. In ADC

configuration, the performance was limited by the offset of bit-decision-comparators

and the settling time of reference voltages. The offset of bit-decision-comparators are

adjusted for the first 2 stages. At 50MSPS reference voltages settle reasonably well.

The FOM would improve if the target ENOB had been achieved. The chip is also
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Figure 6-20: The main tone and its harmonic at the output of the ADC that measures
the output of a third order low-pass filter.

tested with a ramp rate corresponding to 150MSPS resulting ENOB of 8bit.

In filter configurations, the filter characteristics are reasonably close to the ex-

pected one. The linearity of the filter also cannot be measured properly since the

output non-linearity is dominated by the non-linearity of the on-chip ADC. The mea-

surements are summarized in Table 6.2
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Table 6.1: Cost of Reconfigurability.

Order of the filter Noise Bandwidth
Power ADC: 4% increase due to parasitics

ADC: large increase due to scaling
Filter: 6% increase due to parasitics
Filter: large increase due to scaling

Area ADC: 3.4x increase
Filter: 1.6x increase

Noise ADC: 18% increase due to parasitics
Filter: No significant increase.

Speed ADC: No significant increase.
Filter: No significant increase.

Table 6.2: Summary of Measurements.

General
Process 65nm Digital CMOS
Active Area 340um x 900um
Supply 1V
Functionalities Pipeline ADC, Low-pass filter

Pipeline ADC
Quantization Levels 10 bits
ENOB 8.02 bits
INL +1.7/-1.8
SFDR 62dB
Power 1.92mW (Total)
FOM 150fJ/conversion-step
Input Signal Bandwidth 56MHz
Sampling Rate 50 MSPS

Low-Pass Filter
Filter 1 Second order butterworth low-pass filter (switched capacitor)
Filter 2 Third order butterworth low-pass filter

Cut-off Frequency 1MHz
Sampling Frequency 50 MSPS
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Chapter 7

Conclusions

A highly-configurable analog system is presented. A prototype chip is fabricated

and an ADC and filter functionalities are demonstrated. The chip consists of eight

identical programmable stages (except for the first stage that has minor differences

in the sampling circuit). Each stage can either amplify or integrate its inputs. The

output can be sent to the adjacent stages. The chip can be configured as a pipeline

ADC, switched-capacitor filter, or a programmable gain amplifier (a gain of 4 is

demonstrated).

In an ADC configuration, the first five stages are programmed to implement a 10-

bit ADC. The ADC has ENOB of 8 bits at 50 MSPS. The ENOB improves to 8.5 bits if

the sampling rate is lowered to 30MSPS. The ADC has an FOM of 150fJ/conversion-

step, which is very competitive with the state of the art non-reconfigurable ADCs.

The performance of the ADC is limited due to the offset of bit-decision-comparators,

and the coupling noise and the ripples on the reference voltages. The offset of BDCs

were adjusted for the first two stages. In addition 50MSPS sapling rate was used

to allow enough time for the reference voltages to settle. Measurements show that

if the ramp rate of the ZCBCs increases, the ENOB of the ADC does not change.

This shows that the delay (or delay variation) of zero-crossing detector is not the

bottleneck. It also shows that the output resistance of the current sources, and the

resistance of the switches are not the bottleneck either (since their contribution to

the ADC non-linearity is more at higher ramp rates). The first stage is responsible
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for 75% of the input-referred mean square noise. Sampling noise is responsible for

40% of the total mean-square noise and the zero-crossing detector is responsible for

60%. As a result, optimizing the mean-square noise of the zero-crossing detector of

the first stage is the most effective way in reducing the overall noise of the chip in the

ADC configuration.

In the filter configuration, several input stages are programmed as a filter and

the next stages are programmed as an ADC. The chip is tested in two different filter

configurations. In one set of tests, the first two stages of the chip are configured as a

second order Butterworth filter and the third stage is configured as an amplifier. The

remaining stages are programmed as an ADC. It was demonstrated that the desired

filter functionality is properly achieved in this configuration. In another test, the

first three stages of the chip are programmed as a third-order Butterworth filter and

the next stages are programmed as an ADC. The desired filter functionality is also

demonstrated in the configuration.

The noise of the system in a filter configuration is also analyzed. It is shown

that in a third order Butterworth filter, more than 90% of the noise is due to the

zero-crossing detector of the last stage. This is mainly due to the fact that the noise

of earlier stages is filtered with the filter transfer function in a similar way that the

input signal is filtered. The last stage of the filter contributes the most to the total

noise power since its noise is not filtered.

The ZCBC architecture has been used to avoid the stability problems of opamp-

based circuits and scale power consumption for a wide range of sampling frequencies.

It is shown that the power consumption of the chip scales linearly with the sampling

frequency.

A new technique is introduced to implement the terminating resistors in a ladder

filter. This technique is very compatible with the reconfigurable architecture and

does not have any area or power overhead. As a result, any stage can be programmed

to be the first stage or the last stage of a filter. The technique saves the area and

reduces the complexity of implementing the terminating resistors in a filter.

An asymmetric differential signaling is also introduced. This method improves the
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dynamic range of the output signals which is particularly important in new technology

nodes with low supply voltage.

7.1 Future Work

The signal-to-noise ratio of the current chip was limited due to the coupling and the

ripples on the reference voltages. In particular, the bond-wire inductance introduces

oscillations of the reference voltage. An on-chip reference voltage can improve the

performance significantly and should be integrated in the future revisions of the chip.

Dual ramp-rate has been proposed for stand-alone ADCs [23]. The linearity of

the system improves with dual ramp rates. This technique should be considered for

the future revisions of the chip.

In this chip, only the feedback capacitors are reconfigurable and provide recon-

figurability for integration. In the future work, the sampling capacitors can also be

reconfigurable, which has two advantages. One advantage is that the sampling noise

of each stage can be changed based on the requirement. In addition, the gain of

each stage can be reconfigured as well to implement programmable gain amplifier.

Alternatively, several rows of reconfigurable stages can be implemented where the

size of all stages are the same in one row and scale from one row to another row. If a

larger (or smaller) stage is needed, the current stage can be connected to a stage in

a different row.

The connectivity of the stages in the current chip is limited to the adjacent stages

for the ADC and filter functionality. In the next revision of the chip, the research

can focus to provide more programmability for the switches.

The current chip architecture has most of the building blocks of a sigma-delta

ADC such as integrators, bit-decision-comparators, and adders. More connectivity

is required between different stages to implement a sigma-delta ADC. The future

work can examine how to extend the functionalities of the chip to sigma-delta ADC.

Similarly, the current architecture of the chip has most of the building blocks for

a time-interleaved ADC. In future research, such functionality can be added to the
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system.

Finally, there are two more techniques that can be used to improve the function-

ality of reconfigurable analog systems as described next. However, each technique has

some challenges. In future work, these techniques can be researched more.

7.1.1 Pulse-Width Modulated Signals

Figure 7-1 shows a block diagram of two stages of the system that are configured to

amplify the signal. There are two signals that connect the two stages. One signal is

V 1ti which is the analog output of the first stage. The other signal is Vcontro, which

is the digital signal that controls the current sources of the next stage. Figure 7-1

shows the shape of signals in the time domain. As shown the pulse width of Vcont,oi

increases linearly with the amplitude of Vst. In fact, Vst can be reproduced in stage

2 using Vcontroi (if the ramp rate of the two stages are adjusted to be the same).

Since it is much easier to have a reconfigurable connection between different stages

for digital signals, Vcontro can be used as the output of each stage. This method

has several challenges. One challenge is that the ramp rate of the two stages should

match very well. Another challenge is that the jitter of the control signal increases

the noise significantly. In future work, this method can be researched more since it

provides better connectivity between different stages, but the matching of the ramp

rates and the jitter of Vcontrol should be addressed. Alternatively, this method can

provide connection between stages that don't require a large signal-to-noise ratio.

7.1.2 Programmable Feedback Ratio Using Programmable

Current Sources

Figure 7-3 shows a ZCBCs with a programmable capacitor in the feedback. Ideally,

the current source that drives the output node provides a constant current 11. The

current that passes through C 2 and C3 depends on their relative values. Once C3 is

programmed, its value stays the same for the rest of the operation. As a result, I2 and

13 also remain constant whenever I1 is on. Since 13 is constant, it can be replaced with
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Stage 2

Figure 7-1: Two stages of ZCBCs with the corresponding signals.

a current source as shown in Figure 7-4. If the value of C3 is changed, the ratio of 12

and 13 changes. Since the output ramp rate is preferred to stay constant (regardless

of the value of the feedback capacitors), it is desired to keep 12 constant regardless of

the value of the feedback capacitors. As a result, when C3 is programmed, I1 should

be programmed as well to keep 12 constant. This means, for each value of C3, 13

should change so that 13 - I2.3' If the circuit is implemented by replacing C3 with

a current source, adjusting 13 has the same effect as adjusting C3.

This implementation can be optimized more as shown in Figure 7-5. The current

of capacitor C1 and C2 in Figure 7-5 is the same as those in Figure 7-4. As a result, the

voltage at the virtual ground node and at the output is the same in the two figures. It

is easier to implement current sources when one side of the current source is connected

to either ground or Vdd. Therefore, Figure 7-5 is simpler for implementation.

The advantage of this method is that programmable current sources are easier

to implement compared to programmable capacitors since they are smaller and their

parasitic capacitors are smaller as well. However, this method has two main chal-

lenges. One challenge is that the output resistance of the current sources is limited

and the output current is voltage dependent. Since the ratio of the currents changes

with the output voltage, nonlinearity is introduced. Another challenge is that the

programmable current source is a proper replacement for the programmable capac-
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Figure 7-2: Time-domain representation of V,,t and Vcontroi that send an analog signal
from one stage to the next stage.

itor only during the output ramp. During the preset (or pre-charge) of the output

node, the current through the programmable capacitor is not constant. As a result,

the current source is not a proper substitute for the programmable capacitor during

the preset. This can be fixed if the output is not preset. Instead, another ramp is

used to ramp the output in the reverse direction any possible output. The combi-

nation of two ramps in opposite directions can drive the output voltage so that the

virtual ground condition is met. This method can significantly increase the range of

programmability since current sources are by far smaller than capacitors.
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Figure 7-3: Programmable capacitor in the feedback of a ZCBC circuit.
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Figure 7-4: Alternate method to implement a programmable capacitor in the feedback

of a ZCBC circuit.
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Figure 7-5: Simplified method to implement a programmable capacitor in the feedback
of a ZCBC circuit.
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Appendix A

The Script to Program the Chip

A scan chain is used to program the chip. Since all stages are identical, their scan

chain is also identical. Tektronix pattern generator (TLA 7012) is used to send the

bit-stream to the chip. The following script is used to generate a bit-stream. The

output of this script can be directly loaded into the Tektronix pattern generator.
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#!/opt/mt t/bin/pert
if ( $ARGV(8] eq "" ) {$Outputfile = "ANALOGFPGAADCCONF.txt";}
else {$Output-fjiLe = $ARGV[I] ;}
$Output-fiLe2 = $Output-file.".HELP";
print "\n\n\n\n\nOutput file: $Output-fiLe\n";
print "\nOutput file for Help: $Gutput-file2\n";

open(Output-file, ">$Outputtfile");
open(Outputfile2, ">$Output-file2");

$1ine-number=;
$1ine-number++;
print Output-file "[vectors]\n";
print Output-file2 "[vectors]\n";
print Output.fiie "SimpLel\tDin-conf [0:0]\tCLk-conf [0:0]\tWrite-conf [0:8]\tRead-conf (0:0]\tTimestampQJ\n";
print Outputjf i1e2 "Siample[]\tDinconf[0:0]\tCk-conf[0:0]\tWrite-conf [0:0]\tReadconf[0:0]\tTimestamp[]\n";
print Output-file "8\t8\t8\t8\t8\t\n";
print Outputfile2 "8\tB\t8\t8\t8\t8\n";

$Timestamp="10.0000000 us";

#-------------------- Setup Voltages
$VDD= "0.989";
#$VcasP = 8BITsR($VDD,"","6","0.325") ; # 31 ... 36
#$VcasN = 88ITsR($VDD,"8","6","0.74") ; # 31 ... 56
# $Vcm = &8ITsR($VDD,"0","6","0.538") ; # 31 ... 56

$VcosP = S8ITsR($VDD,"0","6","0.305") ; # 31 ... 56
$VcasN = SBITsR($VDD,"0","6","0.764") ; SI ... S6
$Vcm = SBITsR($VDD,"8","6","0.518") ; # Si ... 36

#-------------------- Setup Currents
# All vaLues in uA
# $Iref = 93 ; # 93*5=465
# BDC: CiP C2P C2N C1N
$BDCSI = "4"" .8 1"."80000". .8 ". "8 . 80000.0100";
@BDCS = split(//,$BDCS1);

$BDCSetupi = $BDCS[18].$BDCS[16].$BDCS[15].$BDCS[±4].$BDCS[11].$BDCS[13].$BDCS[17).$BDCS[20].$BDCS[19].$BDCS[12];
$BDCSetup0i = $BDCSetupi.$8DCS [3].$BDCS [1].$BDCS[4].$BDCS [8].$BDCS [9].$BDCS [18].$BDCS [7].$BDCS [6].$BDCS[5].$BDCS [2];

print "BDC setup: $BDCSI\n";

$BDCS2 = "4"."0000"."8888"."'8888"".±10.."8888";
BDCS = split(//,$BDCS2);

Figure A-1: The script to program the chip Part 1.
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$BDCSetup2 = $BDCS [18] .$BDCS [16] .$BDCS [15].$BDCS [14] .$BDCS[11].$BDCS [13].$BDCS [±7] .$BDCS [20].$BDCS [19] .$BDCS [12];

$BDCSetup82 = $BDCSetup2.$BDCS[3].$BDCS[±].$BDCS[4].$BDCS[8].$BDCS[9].$BDCS[±8].$BDCS[7].$BDCS[6].$BDCS[5].$BDCS[2];

print "BDC setup: $BDCS2\n";

$BDCS3 = "4"."000"."80000". "8888"."0000" .."0000";
@BDCS = split(//,$BDCS3);

$BDCSetup3 = $BDCS [18] .$BDCS [16].$BDCS [15] .$BDCS[14].$BDCS [11] .$BDCS[13].$BDCS [±7].$BDCS [20] .$BDCS [19] .$BDCS [12];

$BDCSetup03 = $BDCSetup3.$BDCS[3].$BDCS [1).$BDCS [4] .$BDCS[8].$BDCS [9] .$BDCS [18) .$BDCS [7] .$BDCS [6] .$BDCS [5] .$BDCS [2];

print "BDC setup: $BDCS3\n";

$BDCS4 = "4"."0000"."0000"."8001"."0000"."0000";
#$BDCS4 = "4"."0000"."0000"."0000"."0000"."0000";
@BDCS = split(//,$BDCS4);

$BDCSetup4 = $BDCS [18].$BDCS [16].$8DCS[15].$BDCS[14].$BDCS[11].$BDCS [13].$BDCS [17].$BDCS [20].$BDCS [19].$BDCS[12];

$BDCSetup84 = $BDCSetup4.$BDCS [3].$BDCS [1] .$BDCS[4].$BDCS [8] .$BDCS [9) .$BDCS [±0] .$BDCS [7].$BDCS [6].$BDCS[5].$BDCS [2);

print "BDC setup: $BDCS4\n";

$compLoad =
$comploadi = $
$compload2 = $
$compload3 = $
$compload4 = $

$compLoadl =
$compload2 =
$compLoad3 =
$compLoad4 =

* $comploadl =
* $compload2 =
# $compload3 =
# $compload4 =

180118"; # P N
compload
compload
compload
compload

"010010";
"01001";
"100001";
"018810";

"110100";
"110100";
"110100";
"10010±";

N3 N2 N± P1 P2 P3

* Current sources
$RR = 1; *Ramp Rate (slope of the ramp)
$Iref = 93*2.0 ; * 93*5=300
$IPGNDBDC = 8BITsBarR($Iref ,"0","5","25")
$IN_VDDBDC = O8ITsR($Iref ,"0","5","25")

= SBITsR($Iref ,"8","5","18")
= SBITsBarP($Iref ,"8","S","18")

Figure A-2: The script to program the chip Part 2.
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$INVDD = EBITsR($Iref ,"8","5","28")
$IP.GND = SBITsBarR($Iref ,"",5,2")

$INVDDVin = &BITsR($Iref ,"8","5",25")
$IPGNDVin = EBITsBarR($Iref ,"8",5","25")

$IPComp = 88ITsBarR($Iref ,"0","5","20")

$IP.CompSI
$IP.Comp32
$IPCompS3
$IPCompS4
$IPCompSS5
$IPCompS5

= SBITsBarR($Iref
= 8BITsBarR($Iref
= 8BITsBarR($Iref
= SBITsBarR($Iref
= &BITsBarR($Iref
= GBITsBarR($Iref

"8","5","60");
"","5", "60")

$INVDD.GBi2 = BITsR($Iref ,"8","5","8")
$IP.GNDGBi2 = &BITsBarR($Iref ,"8","5","8")

$INVDDVini2 = SBITsR($Iref ,"8","5","6")
$IPGNDVini2 = EBITsBarR($Iref ,"8","","8")

$INAnaLogBufP
$INOutputTraceP
$INIntegrateOutVDD
$IPIntegrate_OutGND
$IPOutputTraceN
$IPAnalog-BufN

#-------------------- Setup CLK
# ALL values in ps

# CLKDelay = 100ps + 100ps * 51 + 200ps * 32
$CLKDelay = 8EITs("400" ,"100","2", "300")

52 Si
; print "CLK Delay : 200ps \n";

* Pulse Width = 100ps + 100ps * SI + 200ps * S2 + 400ps 53 31 52 53
$PulseWidth = 88ITsR("800" ,"188","3","40"); print "Pulse width : 200p \n";

#------------------- Vref

WriteConf("Vcem " ,"6",$VCM);
WriteConf("YcasN" ,"6",$VcasN);
WriteConf("VcasP" ,"6",$VcasP);

#31 ... 36
31 ... S6

# SI ... S6

Figure A-3: The script to program the chip Part 3.
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= 8ITsR($Iref
= 8BITsR($Iref
= &BITsR($Iref
= SBITsBarR($Iref
= SBITsBarR($Iref
= 8BITsBarR($Iref

,"", "5" ,"8")



#--------- -- Yref -

for ($StogeNumber= 1; $StageNumber <9; ++$StageNumber)

{
# ----------------------------------------------------------------------------
# - - - ---- Stage 1-8-------------

WriteConf("IntegratingCap P 1 ...7 ,"7" ,"0000000" ); Cap1.. .Cap7
WriteConf("AnaLog Buf-En" ,"1","8" );

WriteConf("IP-AnaogBuf-N" "S",$IP-Ano og-uf-N * 5i ... 5
WriteConf ("IPOutputTrace-N" "S",$IP-Output-Trace-N ; Si ... 5

WriteConf("IP.IntegrateOutGND" "5",$IP-Integrate-Out-GND * Si ... 5
WriteConf("INIntegrateOutVDD" "5",$IN-Integrate-Out-VDD ) *S ... S5
WriteConf ("INOutput-TraceP" "S",$IN-Output-Trace-P # 51 ... 5
WriteConf("IN.AnlogOuf.P" ,"5",$INAnaLogBufP ); # S1 ... 35

WriteConf("Terminating Resistor" ,"1","8" );
WriteConf("Integrating Cap Output En " ,"1","8" );
WriteConf("IntegratingCap 1 ... 7" ,"7","8000000" ); # Cap1.. .Cap7

---- --- Stage 1-6-------------
* -----------------------------------------------------------

I

for ($StageNumber= 8; $StageNumber >6; --$StageNumber)
{
-----------------------------------------------------------------------------

#-------------- Stage 7-8----------------

WriteConf("In2 On " ,"1","0" ); *

WriteConf("Yin En " ,1,1" ); #
WriteConf("Comparator Offset " ,"6","010010" ): #
WriteConf ("Sample on Feedback Cap " ,"1","1" ); #

# WriteConf ("BDC-offset
WriteConf("BDC-offset
WriteConf("BDC-offset
WriteConf("BDC-offset
WriteConf("BDC-offset
WriteConf("BDC-offset

","2@","$BDCSetup" );
,"4","0000" ); #
,"4","0000" ); #
,"4","8888" ); #
,"4","0000" ); *
,"4","0000" ); #

WriteConf("ConfBDC-en " ,"""" );
WriteConf("ConfBDC " ,"5","00000" ); * D .... D

Figure A-4: The script to program the chip Part 4.
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WriteConf("2_Out " ,"1","0" );
WriteConf("SiOut " ,"i","8" );

WriteConf("IPGNDGBi2 "
WriteConf("IPGNDVini2 "
WriteConf("INVDDVini2 "
WriteConf("INVDD.GBi2 "
WriteConf("IPComp "
WriteConf("IP.GNDGB
WriteConf("IP.GND
WriteConf("IPGNDVin
WriteConf("INVDDVin
WriteConf ("INVDD
WriteConf("IN.VDDGB
WriteConf("INYDDBDC
WriteConf("IP.GNDBDC "

,"5","0000"
,"5","00000"
,"5","00000"
,"5",8 8"00000
,"5","00000"
,"5","00000"
"5", " "00000
,5,"00000"
,"5","00000"
,"5", "88888"
,"5","88888"
,"5","88888"
,'"","88888"

# 0: D 1:GND
# 0: Clean i:RZ

# St ... S5
) 31 ... 5
SSi ... S5
SSi ... S5
# S1... 35
SSi ... 35
SSi ... 5
3 1 ... 5
SSi ... S5
SSI ... 35

) # S ... 35
Si ... 5

# Si... 35

* ---------- Stage 7-8

#-------- -- Stage 6 ------

WriteConf("In2 On " ,"1"" ); #

WriteConf("Vin En " ,"i","8" ); #
WriteConf("Comparator Offset " ,"6 018010" ); #
WriteConf("Sample of Feedback Cap " 1,1" ); #

WriteConf("BDCoffset " ,"4","0000" ); #
WriteConf("BDC-offset " ,"4N 00"
WriteConf("BDC-offset " ,"4","888" ); #
WriteConf("BDC-offset " "4",0080" );
WriteConf("BDC-offset " ,"4","0000" ); #

WriteConf("ConfBDC-en " ,"1","8" );
WriteConf("ConfBDC " ,"5","00000" ); # Di .... D5

Figure A-5: The script to program the chip Part 5.
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WitseCor("S2_out "": D I:GND Seems to work
WriteConf("SiOut ","," );Clean i:RZ Seems to work

xitegg9f("IPGNDGBi
2  

"..,"S","00000" # S. 5
WriteConf("IPGNDVini2 " "5","00000"1 5. S

WriteConf("INVDDVini2 " ,"5",8"00000" * i . S

WriteConf("IN.VDDG8i2 " ,"5","00000" S1. S5

WriteConf("IPComp " ,"5", " .

WriteConf("IPGNDGB " ,"1,"." S

WriteConf("IPGND " ,"5","88800000" Si S5

WriteConf("IPGNDVin ,"5',"00000" 1 ..S S5

WriteConf("INVDD_Vin " ,"5","00000" .S S

WriteConf("INVDD " ,"5","00000" Si ... 5

WriteConf("INVDDGB " ,","00000" # St ...

WriteConf("INVDDBDC " , .","00000". * Si ... S5

WriteConf("IPGNDBDC "'."," 8 # S1 ...
-t :ge 6 1:GND--eems-o-wor

# ---------------------------------------------------------------------------
I ---------------------------------------------------------------------------

* --------------Stage 5----------------
WrtteCnfQIn2 On "1",".".5

#iteCon;("Yin En
Wrie&ofQComparator Offset " ,"5',"0810i" )
WriteConf("S;ple of Feedback Cap . #i

Writeonf('BOC-ffset "*);#,"31..5

WriteConf("BDC)offset "#4"3,"1.

WriteConf('BDC-offset ,4" ,'8"0 );
WriteConf(BDC)offset "#4",1"...
WriteCon);Con# .DC. n35
WriteConf("Cnf.BDC "",18 00.1 * Di .... D5

Write~nf(S2Out '* 11'"i", 0: D8 0 iGND 43eems to work

WieGnt(-SIOut --1-- .8 .. 18 Clean ± RZ #Seems to work

WriteConY" IP..GND.GBi2 " 888881, ) I Si ... S5

WriteCan ("IP-..ND..Yini2 ,'5,Y.00088" ), IS 9..S

WriteConf("IN-VDDini2 "5%08800 ); # 31 ... 55

WriteConf(IN-.VDD-68i2 ' 5","00000" ), *Si ... S5

WriteCant( IP.CompS5 ",5E.,$IPCompS ) # S1 ... S5
WriteCant(IP.GNDGB "5',$IP-GND-G ) # Si ... S5

WriteConf("IP# GND ",$IP--ND S Si ... S

WriteConf("IP-GND-.Vin ,"5",$IP-.GND-VYin ) ISi ... 5

WriteCont("IN-YDD.Yin '",,$IN-VYDD-Vin ), 1S ... 5

WriteCan ("IN-VDD ,S,$IN-YDD ), ISi ... S5

WriteCont ("IN-VDD-G8 "",$IN-V.DD-.GB ) ISi ... S5

WriteCont("IN-YDD.ODC " "5",$IN-VDL-BDC ), S ... S5

WriteConf("IP-ND.BDC ",5",$IP-GND-8DC ), 1S ... S5
#-------------------Stage S -----------

#----------------------------------------------------------------------------------

Figure A-6: The script to program the chip Part 6.
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------------- Stage 04 -
WriteCnf.("Inz On "_"',"8" ); #
WrteCGnf,("Vin En " 1","1" ); #
WriteConf("Comparator Offset " ,"6",$compload4 ); #
WriteConf("SampLe of Feedback Cap " ,"1","i" ); #

.ri grejf("BDC_offset ",, 20","$BDCSetup04" )

.99.RqR.("Conf_BDC_en """"")
WrteCanf("Conf-BDC " J"5" "88888" ) #01 D5

IWriteCnfr("S2-Out " "1","0" ); #80D i:GND *Works
WriteConf("S1Out ","1","8" ); #0: CLean i:RZ #Works
lWriteConf("IP.GND_GBi2 l's",$IP_.NELGBt2 # Si S5
SWriteCanf("IP_GND_Vini2 "5",$IPGNDVini2 # Si 5
WriteConf("IN_VDD_Vini2 "5",$INVDDVini2 * Si 55
WriteConf("IN_VDD_GBi2 "5',$INYDDG8i2 # * .i 5
WriteConf("IP_CompS4 "5",$IPCamp54 # Si . 5
WriteConf("IPGNDGB "5",$IP-GND-GB * Si ... S5
WriteConf("IPGND """,$IRGND # Si ... 5
WrtteCanf("IP-ND in ""5",$IP_GNDin ); # S ... S
WrtteCnf("IN .Vin " ,"5",$INVDD_Vin ); # Si1 5
WriteCanf("INDD " ,"5",$INVDD ); # Si ... 5
WriteCant ("INDD8 " ,"5",$INVDDGB ); # 31 ... 55
WriteCant ("INYDDBDC " ,"5",$IN-VDDBDC ); # Si 5
WriteConf("IP.GNDBDC " ,"5",$IP.GNDVn ); # Si ... 5

-L----------Stage 84----------------

- ----------Stage 83----------------
WriteConO("I n "
Wi~tWGRt("Vin En " J. "I' ) *
WriteConf("CNparat ffset " , "" ,$cop ad )
WriteConf("Sampie af Feedback Cap,"5,$ iV B ); #
WriteConf("BDCsffset ","

2
5","$DCSetup3" );

WriteConf("CInfDBDC " ,"5",$IP8GNDBD .... #5
riteont("S2-Out " 8 ; # 8: D i:GND *Works

WriteCanf("SOut S"1 08: Cean i:RZ #Works
WriteCon("LP..GND5i2 "_," ,5,$IP.GND38i2 ) Si ... S5
WitGaf("IP 0140_Yini2 " "5",VPGNDVini2 ): *Si . S5
WriteCanf("IN_ Vini2 " ,"5",$INVDDVYini2 ) * Si ... 35
WriteCnf("IN 8i2 " ,"5",$IN_.V00DG8i2 ); *Si... 35
WriteCant("IPCampS3 " 5",$IPCampS3 1 Si... 55
WriteCont("LPN B ""5" ,$IPGNDGB #; *51 ... S5
WriteCant ("IP_0 " "5",$IP_0ND ) * Si ... S5
WriteCanf("IP 0 Yin " "5",$IP_,GNDYin ) * 1 S ... 35
WriteCnf("IN tn " "5",$INY0DDYin # * 1 Si... S5
WriteCanf ("IN_ " "S",$IN-VDD #; * Si ... 35
WriteCant ("INY008 " "5-,$IN-VDD-. ; * Si ... 35
WriteCanf("IN.. OC " "5",$IN-VDD-BDC #; * 51... 35
WriteCanf(" IP.GNO C ""5" ,$IP-GND-BDC #* Si ... 35

# ------------------------------------------

Figure A-7: The script to program the chip Part 7.
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# - --- Stage 02 -

iteConf,("In2 On " ,'1","8" ); #
Win f,("Vin En " 'i","1" ); #
WriteConf("Comparator Offset ,"6", $compload2 ); #
WriteConf("SampLe of Feedback Cap " ,"1"" ); #
WriteConf("BDC-offset ";"20","$BDCSetup02" );
Witeo ("ConfBDC-en " I'""")
WriteConf("ConfBDC " ,5","00000" ); D1 .... D5
WriteConf("S

2
_Out t." ," " ); # 8: D 1:GND #Seems to work

W rI("oFQ'SiOut " ,"1","8" ); $0: Clean i:RZ #Seems to work

Wrtefl ("IPGNDGBi
2  

""5" ,$IP_GND_ 2 ); # S1 ... S5
WrtteConf("IPGNDVini2 ",5",$IPGNDYini2 ); 1... 5

WriteConf("INVDDVini2 " ,"5",$INVDDVini2 ); ... S5

WriteConf("INVDDGBi2 " ,"5",$INVDDGBi2 ); 31 ... 55

WriteConf("IPCompS2 " ,"S",$IP.CompS2 ); 1... S
WriteConf("IPGNDGB " ,"5-,$IPGNDGB ); ... Ss

WriteConf("IPGND " ,"5",$IP.GND ); # Si 5

WriteConf("IPGND.Vin " ,"5",$IPGNDVin ); ... S5

WriteConf("INVDDVin ,"5",$INVDDVin ); 51 ... 35
WriteConf ("INVDD "t,'5",$INVDD );1 ... 35

WriteConf("INVDDGB " ,"5",$IN-VDDGB ); # 51 .
WriteConf("INVDDBDC " ,"5",$INVDDBDC ); # Si . 5

WriteConf("IPGNDBDC " ,"5",$IPGNDBDC ); ... S5

# --- Stage 02 -------

# ---- Stage 01 ----- ---

WriteConf ("In2 On "I1","" ); #
WiCon("Vin En " ,"1" ); #
WriteConf("Comparator Offset " ,"6", $comploadi ); #
WriteConf ("Sample of Feedback Cap ,"1","i" ); #
WriteConf("BDC.offset "'"20","$BDCSetup01" );
WrtteConf("ConfBDC-en ",'1","1" );
WriteConf("ConfBDC " ,"5","00000" ); # D1 .... D5
WriteConf("S2_Out " ,1,8 ); $0: D 1:GND #Seems to work

teonf("S1_Out ","1","8" ); $0: Clean 1:RZ $Seems to work

WriteConf("IPGNDGt2 *"E",$IPGNDGBi2 ); # S ... S5

teConf("IPGNDYini2 " ,"5",$IPGNDVini2 ); $ Si .. S5

WriteConf("INVDDVini2 " ,"5",$INVDDVini2 ); # S1 ... 35
WriteConf("INVDDGBi2 " ,"5",$IN.VDDGi2 ); # 31 ... 35
WriteConf("IPCompSi " ,"5",$IPCompSi ); # 31 ... 35
WriteConf("IP.GNDGB " ,"",$IPGNDGB ); # S1 ... 35
WriteConf("IPGND ,"5",$IPGND ); $ S1 ... S5

WriteConf("IPGNDVin " ,"5",$IPGNDVin ); $ Si ... S5

WriteConf("IN.VDDYin ,"5",$INVDDVin ); # Si ... S5

WriteConf("INVDD " ,"5",$INVDD ); # 31 ... 35

WriteConf("INVDDGB " ,"5",$IN-VDDGB ); # 51 ... 55
WriteConf("INVDDBDC " ,5",$INVDDBDC ); # S1 ... 35
WriteConf("IPGNDBDC " ,5",$IP.GNDBDC ); $ S1 ... S5

---------- Stage 01 ---------------

Figure A-8: The script to program the chip Part 8.
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# ----------- Clock/Pulse Gen -

WriteConf ("Pulse Width" ,3",$PulseWidth); # = 18ps + i8Bps 51 + 28Bps 32 + 40Bps 33
WriteConf ("CLK Enable 58" "i"1"8");
WriteConf("CLK Enable 37" "1","0");
WriteConf("CLK Enable S6" ,,.)
WriteConf("CLK Enable 35"
WriteConf("CLK Enable 54"
WriteConf("CLK Enable 33"
WriteConf("CLK Enable 32"
WriteConf("CLK Enable ,"1","") Seems to work
WriteCon("None Overlapping CLK delay" "2",$ClKDely);# = 100ps 1ps + 180ps * S2 + 200ps 3 S
#--------------- Clock/Pulse Gen-------------
# -----------------------------------------------------------
Wr or("1-3" "1","1"); #S4-SB=8 31-55=1
#-- --- END of Analog FPGA #2 -- --

#works

31 32 53

2 S2 Si

close (Output..f i le);
close (Outputfile2);
print "Configuration file created.\n\n";
system "date";
print "\n";
print " -------- Campleted------------------------- n\n\n\n\n";
sub WriteConf
{

# Name of configuration bits
# Number of bits
* Value of bits
$Comment = $4[0];
$NofBits = $_[1];
$BitValues = $4[2];
@BitYal = split(//,$BitValues);
for ($temp = $NofBits-1; $temp > -1; --$temp)
{
print Output-file "$linenumber\t $BitYal[$temp]\t 8\t 8\t @\t $Timestamp\n";
if ($NofBits>1)
{ print Outputfile2 "$1ine.number\t $BitVai[$temp]\t B\t 8\t @\t $Timestamp\t\t$Comment\t\tb$temp\n";
else
{ print Output-file2 "$linenumber\t $BitVal[$temp]\t 8\t B\t 8\t $Timestamp\t\t$Comment\n"; }
$1inenumber++;
print Output-file "$line-number\t $BitVal[$temp]\t 1\t B\t 8\t $Timestamp\n";
print Outputfile2 "$line-number\t $BitYal[$temp]\t 1\t B\t 8\t $Timestamp\n";
$1ine-number++;

Figure A-9: The script to program the chip Part 9.
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sub BITs
{

Full Scale.Max
full Scale.Min
Aumber of Bits
#Input Signal

$BjulLMax = $.[B];
$8julLMin = $4[1];
$B.Bits $4[2];
$BInput $[3];
$B-ulLMax $BFulL Max - $Bjull-Min;
$BJnput $BJnput - $B-ulLMin;
$Output =1"";
for($temp..B=1; $tempB4BBits+i; ++$temp.B)

{
$BulLMax = $B-ulLMax/2;
if ($Binput 4cBtFulLMax)

{
$Output = $Output."B";

}
else

{
$BJnput = $BJnput - $B-FuulLMax;
$Output = $Output."i";

}
}
$Output;

Figure A-10: The script to program the chip Part 10.
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sub BITsR

# The output of BITsR is in the reverse order of BITs

;Full ScaleMax
4Full ScaIeMin
Number of Bits
#Input Signal

$BFulLMax = $4[];
$BjulLMin = $[1];
$BBits = $4[2];
$B.Input = $[3];
$BjulljMax = $BulLMax - $B-ulL-Min;
$BInput = $B.Input - $BFuLlMin;
$Output = "";
for($temp.B=i; $temp..8$BBits+1; ++$temp.B)

$BjulLMax = $BFulLMax/2;
if ($BInput cB-FuLLMax)

$Output = "6".$Output;
}
else
{

$BInput = $BInput - $B.ulLMax;
$Output = "i".$Output;

}
$Output;

Figure A-11: The script to program the chip Part 11.
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sub BITsBar

full Scale..Max
full Scale.Min
Number of Bits
tlnput Signal

$BFulLMax = $_[@];
$BjulLMin = $41];
$B.Bits $4[2];
$BJnput $[3];
$B-FulLMax $BjulLMax - $BjulLMin;
$BJnput $BJnput - $BjulLMin;

$Output = ;
for($tempB=i; $tempB<$B.Bits+1; ++$temp.B)

$BjulLMax = $BFull-Max/2;
if ($BJnput <$8FulLMax)

$Output = $Output."i";

}
else

$BJnput = $BJnput - $B-ulLjMax;
$Output = $Output."B";

}
}
$Output;

Figure A-12: The script to program the chip Part 12.
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sub BITsBarR

full Scale.Max
full ScaleMin
#iumber of Bits
#Input Signal

$BjulLMax = $_[0];
$BFulLMin = $1];
$B.Bits = $[2];
$B.Input = $[3];
$B-ulLMax = $BFull Max - $B-FutLMin;
$BInput = $B.Input - $BJulLMin;
$Output = "";
for($temp.B=1; $temp..848.Bits+1; ++$tempB)

$BjulLMax = $BjulLMax/2;
if ($B.Input 4cBtFulLMax)
{
$Output = "i".$Output;

}
else

$BInput = $B.Input - $BFulLMax;
$Output = "B",$Output;

}
}
$Output;

}

Figure A-13: The script to program the chip Part 13.
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Appendix B

Noise Bandwidth Calculation

The noise bandwidth calculation is shown in Figure B-1. In this calculation, the poles

are located at fp = 'L. The results is multiplied by 27r if the pole is located at 1Hz,

and multiplied by 27fpoe if the poles are located at fpoie. The results are summarized

in Table B.1

Table B.1: Noise bandwidth of low-pass filters when all poles are located at the same

frequency.

Order of the filter NBW-Poles at b NBW-Poles at 1Hz NBW-Poles at fpoie

First order 1/4 7r/2 1.5 7 fpoe

Second order 1/8 7/4 0.78fpole

Third order 3/32 37r/16 0.58fpole
Forth order 5/64 57r/32 0.49fpole
Fifth order 35/512 357r/256 0. 4 3 fpoe
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Integrate((AbsCH[f] ^1 2, (f, 0, o}]
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3

32
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[411

35
Cutl11 -
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Figure B-1: Integral calculation by mathematica
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Appendix C

Transfer Function of Noise from

Different Sources

In the block diagram of Figure C-1, Mason rule [491 [50] can be used to derive the

transfer function of different inputs to the output as follows:

Hvn11(s) =

Hvn12 (8) =

(Cl+C3+ L2)* S + (Cl* L2 + C3* L2)* S 2 C1* C3* L2* S3 +2
(C.1)

C1*S
(Cl+C3 + L2)* S + (C1* L2 +C3* L2)* S 2 + C1* C3* L2 *S 3 +2

(C.2)

1+C1*S
Hvn21(s) = (C1 + C3 + L2) * S + (Cl * L2 + C3 * L2) * S.2 + C1 * C3 * L2 * S.3 + 2

(C.3)

C1* L2* S 2 + L2 S

(Cl+C3+ L2)* S +(Cl * L2+C3* L2)* S 2 +C1* C3* L2* S3 + 2

(C.4)
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Hvn22 (S) =



C1 L2*S 2 +L2*S+1
(C1 +C3+ L2) * S + (Cl L2 +C3* L2) * S 2 +1* C3 * L2 *S3+2

(C.5)

C1*C3*L2* S 3 +C3*L2* S2 +C3*S
(C1+C3+ L2)* S+(Cl * L2+C3 L2)* S2 +C1*C3* L2* S3+2

(C.6)

2+(C3+ L2+C1)* S+(L2*C1+C3 L2)* S2+C3 L2*C1 * S3
(C.7)

For a corner frequency is 1MHz, the following values are used

R1 = 1

C1 = 1.59155e-07 F

L2 = 3.1831e-07 H

C3 = 1.59155e-07 F

R5 = 1

out

Figure C-1: Block diagram of a third order low-pass filter with sources of noise.
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Appendix D

Noise of an Amplifier with

Parasitic Capacitance on Virtual

Ground Node

Figure D-1 shows an amplifier. During the phase 1, Vin is sampled across the 180fF

and 60fF capacitors. The charge across each capacitor is:

Q1 =1V* 180fF

Q2 Vi * 60f F

(D.1)

(D.2)

During phase 2, the charge on the 180fF capacitor transfers to the 60fF capacitor. In

the absence of V (VK=0), the output voltage at the end of phase 2 is:

(D.3)V 180f F + 60f FV n= 4V
60f F

Figure D-2 shows the circuit in phase 2. If the 25fF parasitic capacitor is ignored,

the contribution of the V at the output can be calculated as:

Vout= 180fF K = 3 V
60f Fn

(D.4)
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Adding the parasitic capacitor, the output noise is:

180fF + 2 5 fFv60f F

180fF + 25fF 2 2
out 60fF ) 2 V2

As a result:

Vin

2 60fF 2

V-i1 180fF

25f E~~>.= --- Vn

Figure D-1: Schematic of an amplifier.

60fF

180fF

Vn

Figure D-2: Phase 2 of the amplifier.
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